European Journal of Chemistry

Multivariate analysis of images in spectrophotometric methods: Quantification of soil organic matter

Crossmark


Main Article Content

Pedro Augusto de Oliveira Morais
Diego Mendesde Souza
Beata Emoke Madari

Abstract

Soil organic matter (SOM) is usually quantified by Walkley-Black titration method or using a spectrophotometric method. This study proposes an alternative method for quantification of SOM using digital image from scanner and mathematical algorithms to replace titration and spectrophotometry procedures. For this, after SOM oxidation by potassium dichromate, digital images were acquired. Posteriorly, extraction of RGB color histograms from images have occurred, followed by the use of multivariate calibration method: partial least squares (PLS). Six soil samples were analyzed. We used the Walkley-Black method as reference. SOM was estimated by images using the PLS tool. The new method, besides being a fast, low cost, and more operational alternative, presented statistically equal results in relation to the reference method, as assessed by the Student t-test and F-test at 95 % confidence.


icon graph This Abstract was viewed 929 times | icon graph Article PDF downloaded 333 times

How to Cite
(1)
Morais, P. A. de O.; Souza, D. M.; Madari, B. E. Multivariate Analysis of Images in Spectrophotometric Methods: Quantification of Soil Organic Matter. Eur. J. Chem. 2021, 12, 377-381.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Schnitzer, M. A Lifetime Perspective on the Chemistry of Soil Organic Matter. In Advances in Agronomy; Elsevier, 1999; pp 1-58.
https://doi.org/10.1016/S0065-2113(08)60842-1

[2]. Yang, F.; Zhang, G.-L.; Yang, J.-L.; Li, D.-C.; Zhao, Y.-G.; Liu, F.; Yang, R.-M.; Yang, F. J. Hydrol. (Amst.) 2014, 519, 3086-3093.
https://doi.org/10.1016/j.jhydrol.2014.10.054

[3]. Shepherd M.A.; Harrison, R.; Webb, J. Soil Use Manag. 2002, 18 (3), 284-292.
https://doi.org/10.1079/SUM2002134

[4]. Gama-Rodrigues, A. C. Agrofor. Syst. 2011, 81 (3), 191-193.
https://doi.org/10.1007/s10457-011-9372-9

[5]. Carter, M. R. Agron. J. 2002, 94 (1), 38-47.
https://doi.org/10.2134/agronj2002.3800

[6]. Walkley, A.; Black, I. A. Soil Sci. 1934, 37 (1), 29-38.
https://doi.org/10.1097/00010694-193401000-00003

[7]. Raij, B. van; Andrade, J. C.; Cantarella, H.; Quaggio, J. A. Análise química para avaliação da fertilidade de solos tropicais; Instituto Agronômico: Campinas, 2001.

https://www.iac.sp.gov.br/publicacoes/arquivos/Raij_et_al_2001_Metod_Anal_IAC.pdf

[8]. Cohen, M. D.; Kargacin, B.; Klein, C. B.; Costa, M. Crit. Rev. Toxicol. 1993, 23 (3), 255-281.
https://doi.org/10.3109/10408449309105012

[9]. Chromium in the Natural and Human Environments; Nriagu, J. O., Nieboer, E., Eds.; John Wiley & Sons: Nashville, TN, 1988.

[10]. Souza, D. M. de; Morais, P. A. de O.; Matsushige, I.; Rosa, L. A. Rev. Bras. Cienc. Solo 2016, 40 (0).
https://doi.org/10.1590/18069657rbcs20150150

https://doi.org/10.1590/18069657rbcs20150150.
https://doi.org/10.1590/18069657rbcs20150150

[11]. Kirsten, W. J. Organic Elemental Analysis: Ultramicro, Micro and Trace Methods; Academic Press: San Diego, CA, 1984.

[12]. Ma, T. S. Elemental Analysis, Organic Compounds. In Encyclopedia of Physical Science and Technology; Elsevier, 2003; pp 393-405.
https://doi.org/10.1016/B0-12-227410-5/00220-9

[13]. Harris, D. C. Análise Química Quantitativa; 9th ed.; LTC: Rio de Janeiro, 2017.

[14]. Gatto, A.; Barros, N. F. de; Novais, R. F.; Silva, I. R.; Mendonça, E. de S.; Villani, E. M. de A. Rev. Bras. Cienc. Solo 2009, 33 (3), 735-740.
https://doi.org/10.1590/S0100-06832009000300026

[15]. Geladi, P.; Grahn, H. Multivariate Image Analysis; John Wiley & Sons: Chichester, England, 2000.
https://doi.org/10.1002/9780470027318.a8106

[16]. de Almeida, V. E.; da Costa, G. B.; de Sousa Fernandes, D. D.; Gonçalves Dias Diniz, P. H.; Brandao, D.; de Medeiros, A. C. D.; Veras, G. Anal. Bioanal. Chem. 2014, 406 (24), 5989-5995.
https://doi.org/10.1007/s00216-014-8015-1

[17]. Klimowicz, A. C.; Bose, P.; Nakoneshny, S. C.; Dean, M.; Huang, L.; Chandarana, S.; Magliocco, A. M.; Wayne Matthews, T.; Brockton, N. T.; Dort, J. C. Eur. J. Cancer 2012, 48 (14), 2166-2174.
https://doi.org/10.1016/j.ejca.2012.04.010

[18]. Borin, A.; Ferrão, M. F.; Mello, C.; Cordi, L.; Pataca, L. C. M.; Durán, N.; Poppi, R. J. Anal. Bioanal. Chem. 2007, 387 (3), 1105-1112.
https://doi.org/10.1007/s00216-006-0971-7

[19]. da Costa, A.; Helfer, G.; Barbosa, J.; Teixeira, I.; Santos, R.; dos Santos, R.; Voss, M.; Schlessner, S.; Barin, J. J. Braz. Chem. Soc. 2021, 32 (3), 675-683. https://doi.org/10.21577/0103-5053.20200199.
https://doi.org/10.21577/0103-5053.20200199

[20]. Diniz, P. H. G. D.; Dantas, H. V.; Melo, K. D. T.; Barbosa, M. F.; Harding, D. P.; Nascimento, E. C. L.; Pistonesi, M. F.; Band, B. S. F.; Araujo, M. C. U. U Anal. Methods 2012, 4 (9), 2648-2652.
https://doi.org/10.1039/c2ay25481f

[21]. Godinho, M. da S.; Pereira, R. O.; Ribeiro, K. de O.; Schimidt, F.; Oliveira, A. E. de; Oliveira, S. B. de. Quim. Nova 2008, 31 (6), 1485-1489.
https://doi.org/10.1590/S0100-40422008000600039

[22]. Silva, T. C. O.; Godinho, M. S.; de Oliveira, A. E. Lat. Am. Appl. Res. 2011, 41, 141-145.

http://www.scielo.org.ar/pdf/laar/v41n2/v41n2a07.pdf

[23]. Pinto, T. L. F.; Cicero, S. M.; Forti, V. A. Rev. Bras. Sementes 2007, 29 (3), 31-38.
https://doi.org/10.1590/S0101-31222007000300004

[24]. Flor, E. P. O.; Cicero, S. M.; França Neto, J. de B.; Krzyzanowski, F. C. Rev. Bras. Sementes 2004, 26 (1), 68-76.
https://doi.org/10.1590/S0101-31222004000100011

[25]. Lopez-Garcia, F.; Andreu-Garcia, G.; Blasco, J.; Aleixos, N.; Valiente, J.-M. Comput. Electron. Agric. 2010, 71 (2), 189-197.
https://doi.org/10.1016/j.compag.2010.02.001

[26]. Vilar, W. T. S.; Aranha, R. M.; Medeiros, E. P.; Pontes, M. J. C. J. Braz. Chem. Soc. 2015, 26 (1), 102-109.

[27]. Gomes, M. S.; Trevizan, L. C.; Nobrega, J. A.; Kamogawa, M. Y. Quim. Nova 2008, 31 (6), 1577-1581.
https://doi.org/10.1590/S0100-40422008000600050

[28]. Paciornik, S.; Yallouz, A. V.; Campos, R. C.; Gannerman, D. J. Braz. Chem. Soc. 2006, 17 (1), 156-161.
https://doi.org/10.1590/S0103-50532006000100022

[29]. Grasel, F. S.; Ferrão, M. F.; Helfer, G. A.; Costa, A. B. J. Braz. Chem. Soc. 2016, 27 (12), 2372-2377.

[30]. Coutinho, M.; Morais, C.; Neves, A.; Menezes, F.; Lima, K. J. Braz. Chem. Soc. 2017, 28 (12), 2500-2505.

[31]. Silva, L. C. da; Lima, D. F. de; Silva, J. A.; Morais, C. L. M. de; Albuquerque, B. L.; Bortoluzzi, A. J.; Domingos, J. B.; Araújo, R. M.; Menezes, F. G.; Lima, K. M. G. J. Braz. Chem. Soc. 2016, 27 (6), 1067-1077.

[32]. Santos, J. L. O.; Leite, O. D.; Vieira, A. D. M.; Jesus, D. S.; Kamogawa, M. Y. J. Braz. Chem. Soc. 2016, 27 (1), 70c76.

[33]. Gonçalves, T.; Rosa, L.; Março, P.; da Silva, L.; Gomes, S.; Matsushita, M.; Valderrama, P. J. Braz. Chem. Soc. 2020, 31 (9), 1955-1963.

[34]. Damasceno, D.; Toledo, T. G.; Godinho, M. S.; Silva, C. P. da; Oliveira, S. B. de; Oliveira, A. E. de. Quim. Nova 2015, 38 (6), 836-841.

[35]. Damasceno, D.; Toledo, T. G.; da Silva Soares, A.; Botelho de Oliveira, S.; Elcana de Oliveira, A. Anal. Methods 2016, 8 (43), 7832-7836.
https://doi.org/10.1039/C6AY02215D

[36]. de Oliveira Morais, P. A.; de Souza, D. M.; Madari, B. E.; Soares, A. da S.; de Oliveira, A. E. Microchem. J. 2019, 147, 775-781.
https://doi.org/10.1016/j.microc.2019.03.070

[37]. Morais, P. A. de O.; Souza, D. M. de; Madari, B. E.; Oliveira, A. E. de. Rev. Process. Quim. 2020, 14 (27), 9-16.
https://doi.org/10.19142/rpq.v14i27.573

[38]. Morais, P. A. de O.; Souza, D. M. de; Carvalho, M. T. de M.; Madari, B. E.; de Oliveira, A. E. Microchem. J. 2019, 146, 455-463.
https://doi.org/10.1016/j.microc.2019.01.009

[39]. de Oliveira Morais, P. A.; de Souza, D. M.; Madari, B. E.; de Oliveira, A. E. Comput. Electron. Agric. 2020, 174 (105435), 105435.
https://doi.org/10.1016/j.compag.2020.105435

[40]. Duchesne, C.; Liu, J. J.; MacGregor, J. F. Chemometr. Intell. Lab. Syst. 2012, 117, 116-128.
https://doi.org/10.1016/j.chemolab.2012.04.003

[41]. Kohl, S. K.; Landmark, J. D.; Stickle, D. F. J. Chem. Educ. 2006, 83 (4), 644-646.
https://doi.org/10.1021/ed083p644

[42]. Colzani, H.; Rodrigues, Q. E. A. G.; Fogaça, C.; Gelinski, J. M. L. N.; Pereira-Filho, E. R.; Borges, E. M. Quim. Nova 2017, 40 (7), 833-839.

[43]. Wold, S.; Sjöström, M.; Eriksson, L. Chemometr. Intell. Lab. Syst. 2001, 58 (2), 109-130.
https://doi.org/10.1016/S0169-7439(01)00155-1

Supporting Agencies

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).