European Journal of Chemistry

Theoretical study of the adsorption of BMSF-BENZ drug for osteoporosis disease treatment on Al-doped carbon nanotubes (Al-CNT) as a drug delivery vehicle

Crossmark


Main Article Content

Zaid Husham Al-Sawaff
Serap Senturk Dalgic
Fatma Kandemirli

Abstract

The adsorption energy of the BMSF-BENZ adsorbed complexes was investigated to understand the non-local dispersion interactions, with many other chemical parameters related to this subject like HOMO and LUMO, energy gap, and the time needed for the BMSF-BENZ to be desorbed from the nanotube (recovery time). Our study reveals that Al-CNT is a promising adsorbent for this drug as Eads of BMSF-BENZ/Al-CNT complexes are -22.09, -38.68, -12.89, -31.01, -27.31, -21.90, and -21.42 kcal/mol in the gas phase on the active atoms of the BMSF BENZ (Br, N8, N9, N58, O35, O41, and S), respectively. In addition, the spontaneous and favorable interaction between the BMSF BENZ and all nanoparticles was confirmed by investigating Gibbs free energy and quantum theory of atoms in molecule analysis (QTAIM) so that it can be used as an electrochemical sensor or biosensor. Furthermore, to more visualize the nature of intermolecular bonding and the strength of interaction between the BMSF-BENZ drug molecule and the nanotube, QTAIM has been widely studied in the case of drug delivery purposes.  Al-CNT (4,0) can be extended as a drug delivery system and the work function type sensor.


icon graph This Abstract was viewed 693 times | icon graph Article PDF downloaded 255 times

How to Cite
(1)
Al-Sawaff, Z. H.; Dalgic, S. S.; Kandemirli, F. Theoretical Study of the Adsorption of BMSF-BENZ Drug for Osteoporosis Disease Treatment on Al-Doped Carbon Nanotubes (Al-CNT) As a Drug Delivery Vehicle. Eur. J. Chem. 2021, 12, 314-322.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Kanis, J. A.; Cooper, C.; Rizzoli, R.; Reginster, J.-Y. Osteoporos. Int. 2020, 31 (1), 209.
https://doi.org/10.1007/s00198-019-05184-3

[2]. Deal, C. Nat. Clin. Pract. Rheumatol. 2009, 5 (1), 20-27.
https://doi.org/10.1038/ncprheum0977

[3]. Shimizu, M.; Noda, H.; Joyashiki, E.; Nakagawa, C.; Asanuma, K.; Hayasaka, A.; Kato, M.; Nanami, M.; Inada, M.; Miyaura, C.; Tamura, T. Biol. Pharm. Bull. 2016, 39 (4), 625-630.
https://doi.org/10.1248/bpb.b15-00756

[4]. Mias, S.; Sudor, J.; Camon, H. Microsyst. Technol. 2008, 14, 747-751.
https://doi.org/10.1007/s00542-007-0457-3

[5]. Gu, M.; Zhang, Q.; Lamon, S. Nat. Rev. Mater. 2016, 1 (12) 1-14. https://doi.org/10.1038/natrevmats.2016.70.
https://doi.org/10.1038/natrevmats.2016.70

[6]. Varghese, S. S.; Lonkar, S.; Singh, K. K.; Swaminathan, S.; Abdala, A. Sens. Actuators B Chem. 2015, 218, 160-183.
https://doi.org/10.1016/j.snb.2015.04.062

[7]. Rad, A. S.; Ayub, K. J. Alloys Compd. 2016, 678, 317-324.
https://doi.org/10.1016/j.jallcom.2016.03.175

[8]. Pannopard, P.; Khongpracha, P.; Probst, M.; Limtrakul, J. J. Mol. Graph. Model. 2009, 28 (1), 62-69.
https://doi.org/10.1016/j.jmgm.2009.04.005

[9]. Conti, M.; Tazzari, V.; Baccini, C.; Pertici, G.; Serino, L. P.; De Giorgi, U. In Vivo 2006, 20 (6A), 697-701.

[10]. Singh, R.; Lillard, J. W., Jr. Exp. Mol. Pathol. 2009, 86 (3), 215-223.
https://doi.org/10.1016/j.yexmp.2008.12.004

[11]. Bakry, R.; Vallant, R. M.; Najam-ul-Haq, M.; Rainer, M.; Szabo, Z.; Huck, C. W.; Bonn, G. K. Int. J. Nanomedicine 2007, 2 (4), 639-649.

[12]. Zhang, T.; Mubeen, S.; Myung, N. V.; Deshusses, M. A. Nanotechnology 2008, 19 (33), 332001.
https://doi.org/10.1088/0957-4484/19/33/332001

[13]. Snow, E. S.; Perkins, F. K.; Robinson, J. A. Chem. Soc. Rev. 2006, 35 (9), 790-798.
https://doi.org/10.1039/b515473c

[14]. Giannozzi, P. Appl. Phys. Lett. 2004, 84 (19), 3936-3937.
https://doi.org/10.1063/1.1751626

[15]. Rakib Hossain, M.; Mehade Hasan, M.; Ud Daula Shamim, S.; Ferdous, T.; Abul Hossain, M.; Ahmed, F. Comput. Theor. Chem. 2021, 1197 (113156), 113156.
https://doi.org/10.1016/j.comptc.2021.113156

[16]. Hossain, M. R.; Hasan, M. M.; Nishat, M.; Noor-E-Ashrafi; Ahmed, F.; Ferdous, T.; Hossain, M. A. J. Mol. Liq. 2021, 323 (114627), 114627.
https://doi.org/10.1016/j.molliq.2020.114627

[17]. Hossain, M. R.; Hasan, M. M.; Ashrafi, N.-E.-; Rahman, H.; Rahman, M. S.; Ahmed, F.; Ferdous, T.; Hossain, M. A. Physica E Low Dimens. Syst. Nanostruct. 2021, 126 (114483), 114483.
https://doi.org/10.1016/j.physe.2020.114483

[18]. Qiao, J. L.; Gong, Q. J.; Du, L. M.; Jin, W. J. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2001, 57 (1), 17-25.
https://doi.org/10.1016/S1386-1425(00)00324-3

[19]. Kushwaha, S. K. S.; Ghoshal, S.; Rai, A. K.; Singh, S. Braz. J. Pharm. Sci. 2013, 49 (4), 629-643.
https://doi.org/10.1590/S1984-82502013000400002

[20]. Hoseininezhad-Namin, M. S.; Pargolghasemi, P.; Alimohammadi, S.; Rad, A. S.; Taqavi, L. Physica E Low Dimens. Syst. Nanostruct. 2017, 90, 204-213.
https://doi.org/10.1016/j.physe.2017.04.002

[21]. Bagheri Novir, S.; Aram, M. R. Physica E Low Dimens. Syst. Nanostruct. 2021, 129 (114668), 114668.
https://doi.org/10.1016/j.physe.2021.114668

[22]. Shi, J.; Wang, B.; Wang, L.; Lu, T.; Fu, Y.; Zhang, H.; Zhang, Z. J. Control. Release 2016, 235, 245-258.
https://doi.org/10.1016/j.jconrel.2016.06.010

[23]. Afshari, T.; Mohsennia, M. Mol. Simul. 2019, 45 (16), 1384-1394.
https://doi.org/10.1080/08927022.2019.1635693

[24]. Parlak, C.; Alver, Ö.; Ramasami, P. Main Group Met. Chem. 2016, 39 (5-6) 145-150. https://doi.org/10.1515/mgmc-2016-0031
https://doi.org/10.1515/mgmc-2016-0031

[25]. Bashiri, S.; Vessally, E.; Bekhradnia, A.; Hosseinian, A.; Edjlali, L. Vacuum 2017, 136, 156-162.
https://doi.org/10.1016/j.vacuum.2016.12.003

[26]. Parlak, C.; Alver, Ö.; Şenyel, M. J. Theor. Comput. Chem. 2017, 16 (02), 1750011.
https://doi.org/10.1142/S0219633617500110

[27]. Bilge, M. Anadolu Univ. J. Sci. Technol.-Appl. Sci. Eng. 2017, 1-1.

[28]. Frisch, M. J.; Trucks G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; A. J. Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc. , Gaussian 09, Revision D.01, Wallingford CT, 2013.

[29]. Kim, T.; Ri, C.; Yun, H.; An, R.; Han, G.; Chae, S.; Kim, G.; Jong, G.; Jon, Y. Sci. Rep. 2019, 9 (1), 20264.
https://doi.org/10.1038/s41598-019-56312-2

[30]. Al-Sawaff, Z.; Sayiner, H. S.; Kandemi̇rli̇, F. J. Amasya Univ. Inst. Sci. Tech. 2020, 1 (1), 1-11.

[31]. Shntaif, A. H.; Rashi, Z. M.; Al-Sawaff, Z. H.; Kandemirli, F. Russ. J. Bioorganic Chem. 2021, 47 (3), 777-783.
https://doi.org/10.1134/S106816202103016X

[32]. Hossain, M. A.; Hossain, M. R.; Hossain, M. K.; Khandaker, J. I.; Ahmed, F.; Ferdous, T.; Hossain, M. A. Chem. Phys. Lett. 2020, 754 (137701), 137701.
https://doi.org/10.1016/j.cplett.2020.137701

[33]. Li, J.; Lu, Y.; Ye, Q.; Cinke, M.; Han, J.; Meyyappan, M. Nano Lett. 2003, 3 (7), 929-933.
https://doi.org/10.1021/nl034220x

[34]. Wu, N.; Ji, X.; An, R.; Liu, C.; Lu, X. AIChE J. 2017, 63 (10), 4595-4603.
https://doi.org/10.1002/aic.15861

[35]. Matta, C. F.; Bader, R. F. W. Proteins 2003, 52 (3), 360-399.
https://doi.org/10.1002/prot.10414

[36]. Lu, T.; Chen, F. J. Comput. Chem. 2012, 33 (5), 580-592.
https://doi.org/10.1002/jcc.22885

[37]. Shamim, S. U. D.; Hussain, T.; Hossian, M. R.; Hossain, M. K.; Ahmed, F.; Ferdous, T.; Hossain, M. A. J. Mol. Model. 2020, 26 (6), 1-17. https://doi.org/10.1007/s00894-020-04419-z
https://doi.org/10.1007/s00894-020-04419-z

[38]. Rahman, H.; Hossain, M. R.; Ferdous, T. J. Mol. Liq. 2020, 320 (114427), 114427.
https://doi.org/10.1016/j.molliq.2020.114427

[39]. Rezaei-Sameti, M.; Abdoli, S. K. J. Mol. Struct. 2020, 1205 (127593), 127593.
https://doi.org/10.1016/j.molstruc.2019.127593

[40]. Shahabi, M.; Raissi, H. J. Biomol. Struct. Dyn. 2018, 36 (10), 2517-2529.
https://doi.org/10.1080/07391102.2017.1360209

Supporting Agencies

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).