European Journal of Chemistry

The use of zebrafish to evaluate neuropharmacology of the gold nanoparticles

Crossmark


Main Article Content

Guilherme Carneiro Montes

Abstract

Zebrafish (Danio rerio) is a vertebrate animal used in animal model research with complex brains and behaviors similar to humans and associate with low coast become a model attractive for the academic community to seek zebrafish for scientific research. Studies on diseases of the central nervous system (CNS) have advanced and news therapeutic agents were developed for treatment these disorders. Reports suggest that the zebrafish model supports the neurodegenerative studies due functional conservation between human genes implicated in neurodegenerative disorders. The discovery of therapeutic compounds for CNS using the zebrafish model allows to show a neuroprotective action or neurotoxicity that might alter the behavioral changes. Neurotoxicity tests might perform in zebrafish’s embryos into 96 multi-well plates, which reduces the amount of substances used and cost. The bioactive compounds able to penetrate the blood-brain barrier (BBB) have important role physicochemical properties that might be desirable pharmacological effects and zebrafish trials allow if the substances might penetrate BBB and to exert central activity. The assays zebrafish are used to analyze nanoparticles that are small molecules used to explore variety applications in human health. Gold nanoparticles (AuNPs) has important properties which are extremely interest for pharmaceutical area such as drug delivery, cellular imaging, diagnostics, and therapeutic agents. Gold nanoparticles enhances Parkinson symptoms and improved neuroinflammation. Some studies show zebrafish might use to evaluate gold nanoparticles for human health hazard and toxicity studies. There is enormous potential for zebrafish in preclinical assays due to predict pharmacological and toxicity effects. Specific guidelines focused on methodologies in the zebrafish are needed to ensure adequate reproducible trials.


icon graph This Abstract was viewed 659 times | icon graph Article PDF downloaded 296 times

How to Cite
(1)
Montes, G. C. The Use of Zebrafish to Evaluate Neuropharmacology of the Gold Nanoparticles. Eur. J. Chem. 2021, 12, 488-492.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Chakraborty, C.; Sharma, A. R.; Sharma, G.; Lee, S.-S. J. Nanobiotechnology 2016, 14 (1), 65. https://doi.org/10.1186/ s12951-016-0217-6.
https://doi.org/10.1186/s12951-016-0217-6

[2]. Salamanca-Buentello, F.; Persad, D. L.; Court, E. B.; Martin, D. K.; Daar, A. S.; Singer, P. A. PLoS Med. 2005, 2 (5), e97.
https://doi.org/10.1371/journal.pmed.0020097

[3]. Boverhof, D. R.; Bramante, C. M.; Butala, J. H.; Clancy, S. F.; Lafranconi, M.; West, J.; Gordon, S. C. Regul. Toxicol. Pharmacol. 2015, 73 (1), 137-150.
https://doi.org/10.1016/j.yrtph.2015.06.001

[4]. Wolfram, J.; Ferrari, M. Nano Today 2019, 25, 85-98.
https://doi.org/10.1016/j.nantod.2019.02.005

[5]. Theis, T.; Parr, D.; Binks, P.; Ying, J.; Drexler, K. E.; Schepers, E.; Mullis, K.; Bai, C.; Boland, J. J.; Langer, R.; Dobson, P.; Rao, C. N.; Ferrari, M. Nat. Nanotechnol. 2006, 1 (1), 8-10.

[6]. Xu, L.; Liu, Y.; Chen, Z.; Li, W.; Liu, Y.; Wang, L.; Liu, Y.; Wu, X.; Ji, Y.; Zhao, Y.; Ma, L.; Shao, Y.; Chen, C. Lett. 2012, 12 (4), 2003-2012.
https://doi.org/10.1021/nl300027p

[7]. Barenholz, Y. J. Control. Release 2012, 160 (2), 117-134.
https://doi.org/10.1016/j.jconrel.2012.03.020

[8]. Beg, M. S.; Brenner, A. J.; Sachdev, J.; Borad, M.; Kang, Y.-K.; Stoudemire, J.; Smith, S.; Bader, A. G.; Kim, S.; Hong, D. S. Invest. New Drugs 2017, 35 (2), 180-188.
https://doi.org/10.1007/s10637-016-0407-y

[9]. Freitas, R. A. Stud Health Technol. Inform. 2009, 149, 251-256.
https://doi.org/10.1007/s11098-009-9335-4

[10]. Missaoui, W. N.; Arnold, R. D.; Cummings, B. S. Chem. Biol. Interact. 2018, 295, 1-12.
https://doi.org/10.1016/j.cbi.2018.07.015

[11]. Maynard, A. D.; Warheit, D. B.; Philbert, M. A. Toxicol. Sci. 2011, 120 (Supplement 1), S109-S129.
https://doi.org/10.1093/toxsci/kfq372

[12]. Sant, K. E.; Timme-Laragy, A. R. Curr. Environ. Health Rep. 2018, 5 (1), 125-133.
https://doi.org/10.1007/s40572-018-0183-2

[13]. Belyaeva, N. F.; Kashirtseva, V. N.; Medvedeva, N. V.; Khudoklinova, Y. Y.; Ipatova, O. M.; Archakov, A. I. Biomed. Khim. 2010, 56 (1), 120-131.
https://doi.org/10.18097/pbmc20105601120

[14]. d'Amora, M.; Giordani, S. Front. Neurosci. 2018, 12, 976. https://doi.org/10.3389/fnins.2018.00976.
https://doi.org/10.3389/fnins.2018.00976

[15]. de Abreu, M. S.; Genario, R.; Giacomini, A. C. V. V.; Demin, K. A.; Lakstygal, A. M.; Amstislavskaya, T. G.; Fontana, B. D.; Parker, M. O.; Kalueff, A. V. Neuroscience 2020, 445, 3-11.
https://doi.org/10.1016/j.neuroscience.2019.08.034

[16]. Fontana, B. D.; Mezzomo, N. J.; Kalueff, A. V.; Rosemberg, D. B. Exp. Neurol. 2018, 299, 157-171.
https://doi.org/10.1016/j.expneurol.2017.10.004

[17]. Hoo, J. Y.; Kumari, Y.; Shaikh, M. F.; Hue, S. M.; Goh, B. H. Biomed Res. Int. 2016, 2016, 9732780.
https://doi.org/10.1155/2016/9732780

[18]. Kalueff, A. V.; Echevarria, D. J.; Homechaudhuri, S.; Stewart, A. M.; Collier, A. D.; Kaluyeva, A. A.; Li, S.; Liu, Y.; Chen, P.; Wang, J.; Yang, L.; Mitra, A.; Pal, S.; Chaudhuri, A.; Roy, A.; Biswas, M.; Roy, D.; Podder, A.; Poudel, M. K.; Katare, D. P.; Mani, R. J.; Kyzar, E. J.; Gaikwad, S.; Nguyen, M.; Song, C. Aquat. Toxicol. 2016, 170, 297-309.
https://doi.org/10.1016/j.aquatox.2015.08.007

[19]. Chakraborty, C.; Agoramoorthy, G. Riv. Biol. 2010, 103 (1), 25-57.

[20]. Strähle, U.; Scholz, S.; Geisler, R.; Greiner, P.; Hollert, H.; Rastegar, S.; Schumacher, A.; Selderslaghs, I.; Weiss, C.; Witters, H.; Braunbeck, T. Reprod. Toxicol. 2012, 33 (2), 128-132.
https://doi.org/10.1016/j.reprotox.2011.06.121

[21]. Gao, J.; Mahapatra, C. T.; Mapes, C. D.; Khlebnikova, M.; Wei, A.; Sepúlveda, M. S. Nanotoxicology 2016, 10 (9), 1363-1372.
https://doi.org/10.1080/17435390.2016.1214763

[22]. Zhao, X.; Pack, M. Methods Cell Biol. 2017, 138, 241-270.
https://doi.org/10.1016/bs.mcb.2016.11.006

[23]. Carnovali, M.; Banfi, G.; Mariotti, M. Biomed Res. Int. 2019, 2019, 1-13.
https://doi.org/10.1155/2019/1253710

[24]. Howe, K.; Clark, M. D.; Torroja, C. F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J. E.; Humphray, S.; McLaren, K.; Matthews, L.; McLaren, S.; Sealy, I.; Caccamo, M.; Churcher, C.; Scott, C.; Barrett, J. C.; Koch, R.; Rauch, G.-J.; White, S.; Chow, W.; Kilian, B.; Quintais, L. T.; Guerra-Assunção, J. A.; Zhou, Y.; Gu, Y.; Yen, J.; Vogel, J.-H.; Eyre, T.; Redmond, S.; Banerjee, R.; Chi, J.; Fu, B.; Langley, E.; Maguire, S. F.; Laird, G. K.; Lloyd, D.; Kenyon, E.; Donaldson, S.; Sehra, H.; Almeida-King, J.; Loveland, J.; Trevanion, S.; Jones, M.; Quail, M.; Willey, D.; Hunt, A.; Burton, J.; Sims, S.; McLay, K.; Plumb, B.; Davis, J.; Clee, C.; Oliver, K.; Clark, R.; Riddle, C.; Elliott, D.; Threadgold, G.; Harden, G.; Ware, D.; Begum, S.; Mortimore, B.; Kerry, G.; Heath, P.; Phillimore, B.; Tracey, A.; Corby, N.; Dunn, M.; Johnson, C.; Wood, J.; Clark, S.; Pelan, S.; Griffiths, G.; Smith, M.; Glithero, R.; Howden, P.; Barker, N.; Lloyd, C.; Stevens, C.; Harley, J.; Holt, K.; Panagiotidis, G.; Lovell, J.; Beasley, H.; Henderson, C.; Gordon, D.; Auger, K.; Wright, D.; Collins, J.; Raisen, C.; Dyer, L.; Leung, K.; Robertson, L.; Ambridge, K.; Leongamornlert, D.; McGuire, S.; Gilderthorp, R.; Griffiths, C.; Manthravadi, D.; Nichol, S.; Lee, C.; Westerfield, M.; de Jong, P. J.; Zon, L. I.; Postlethwait, J. H.; Nüsslein-Volhard, C.; Hubbard, T. J. P.; Crollius, H. R.; Rogers, J.; Stemple, D. L. Nature 2013, 496 (7446), 498-503.
https://doi.org/10.1038/nature12111

[25]. Cabuzu, D.; Cirja, A.; Puiu, R.; Grumezescu, A. M. Curr. Top. Med. Chem. 2015, 15 (16), 1605-1613.
https://doi.org/10.2174/1568026615666150414144750

[26]. Aminabad, N. S.; Farshbaf, M.; Akbarzadeh, A. Cell Biochem. Biophys. 2019, 77 (2), 123-137.
https://doi.org/10.1007/s12013-018-0863-4

[27]. Nicol, J. R.; Dixon, D.; Coulter, J. A. Nanomedicine (Lond.) 2015, 10 (8), 1315-1326.
https://doi.org/10.2217/nnm.14.219

[28]. Boisselier, E.; Astruc, D. Chem. Soc. Rev. 2009, 38 (6), 1759-1782.
https://doi.org/10.1039/b806051g

[29]. Davis, A. A.; Leyns, C. E. G.; Holtzman, D. M. Annu. Rev. Cell Dev. Biol. 2018, 34 (1), 545-568.
https://doi.org/10.1146/annurev-cellbio-100617-062636

[30]. Dugger, B. N.; Dickson, D. W. Cold Spring Harb. Perspect. Biol. 2017, 9 (7), a028035.
https://doi.org/10.1101/cshperspect.a028035

[31]. Babin, P. J.; Goizet, C.; Raldúa, D. Prog. Neurobiol. 2014, 118, 36-58.
https://doi.org/10.1016/j.pneurobio.2014.03.001

[32]. Lee, J.; Freeman, J. L. Neurotoxicology 2014, 43, 57-64.
https://doi.org/10.1016/j.neuro.2014.03.008

[33]. Cassar, S.; Adatto, I.; Freeman, J. L.; Gamse, J. T.; Iturria, I.; Lawrence, C.; Muriana, A.; Peterson, R. T.; Van Cruchten, S.; Zon, L. I. Res. Toxicol. 2020, 33 (1), 95-118.
https://doi.org/10.1021/acs.chemrestox.9b00335

[34]. Fan, C.-Y.; Cowden, J.; Simmons, S. O.; Padilla, S.; Ramabhadran, R. Neurotoxicol. Teratol. 2010, 32 (1), 91-98.
https://doi.org/10.1016/j.ntt.2009.04.065

[35]. Lee, J.; Peterson, S. M.; Freeman, J. L. Neurogenetics 2016, 17 (3), 197-199.
https://doi.org/10.1007/s10048-016-0485-1

[36]. Xi, Y.; Noble, S.; Ekker, M. Curr. Neurol. Neurosci. Rep. 2011, 11 (3), 274-282.
https://doi.org/10.1007/s11910-011-0182-2

[37]. Martín-Jiménez, R.; Campanella, M.; Russell, C. Curr. Neurol. Neurosci. Rep. 2015, 15 (6), 33.
https://doi.org/10.1007/s11910-015-0555-z

[38]. Hwang, W. Y.; Fu, Y.; Reyon, D.; Maeder, M. L.; Kaini, P.; Sander, J. D.; Joung, J. K.; Peterson, R. T.; Yeh, J.-R. J. PLoS One 2013, 8 (7), e68708.
https://doi.org/10.1371/journal.pone.0068708

[39]. van Bebber, F.; Hruscha, A.; Willem, M.; Schmid, B.; Haass, C. J. Neurochem. 2013, 127 (4), 471-481.
https://doi.org/10.1111/jnc.12198

[40]. Song, P.; Pimplikar, S. W. PLoS One 2012, 7 (4), e34209.
https://doi.org/10.1371/journal.pone.0034209

[41]. Bretaud, S.; Allen, C.; Ingham, P. W.; Bandmann, O. J. Neurochem. 2006, 100 (6), 1626-1635.

[42]. Armstrong, G. A. B.; Liao, M.; You, Z.; Lissouba, A.; Chen, B. E.; Drapeau, P. PLoS One 2016, 11 (3), e0150188.
https://doi.org/10.1371/journal.pone.0150188

[43]. Bandmann, O.; Burton, E. A. Neurobiol. Dis. 2010, 40 (1), 58-65.
https://doi.org/10.1016/j.nbd.2010.05.017

[44]. Borsook, D. Brain 2012, 135 (2), 320-344.
https://doi.org/10.1093/brain/awr271

[45]. Kalueff, A. V.; Stewart, A. M.; Gerlai, R. Trends Pharmacol. Sci. 2014, 35 (2), 63-75.
https://doi.org/10.1016/j.tips.2013.12.002

[46]. Cachat, J.; Stewart, A.; Utterback, E.; Hart, P.; Gaikwad, S.; Wong, K.; Kyzar, E.; Wu, N.; Kalueff, A. V. PLoS One 2011, 6 (3), e17597.
https://doi.org/10.1371/journal.pone.0017597

[47]. Meshalkina, D. A.; Kysil, E. V.; Warnick, J. E.; Demin, K. A.; Kalueff, A. V. Lab Anim. (NY) 2017, 46 (10), 378-387.
https://doi.org/10.1038/laban.1345

[48]. Demin, K. A.; Meshalkina, D. A.; Kysil, E. V.; Antonova, K. A.; Volgin, A. D.; Yakovlev, O. A.; Alekseeva, P. A.; Firuleva, M. M.; Lakstygal, A. M.; de Abreu, M. S.; Barcellos, L. J. G.; Bao, W.; Friend, A. J.; Amstislavskaya, T. G.; Rosemberg, D. B.; Musienko, P. E.; Song, C.; Kalueff, A. V. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2018, 86, 301-312.
https://doi.org/10.1016/j.pnpbp.2018.03.024

[49]. de Abreu, M. S.; Giacomini, A. C. V. V.; Echevarria, D. J.; Kalueff, A. V. Regul. Toxicol. Pharmacol. 2019, 101, 65-70.
https://doi.org/10.1016/j.yrtph.2018.11.007

[50]. Lopez-Luna, J.; Al-Jubouri, Q.; Al-Nuaimy, W.; Sneddon, L. U. J. Exp. Biol. 2017, 220 (8), 1451-1458.
https://doi.org/10.1242/jeb.146969

[51]. Cirelli, C.; Tononi, G. J. Neurosci. 2000, 20 (24), 9187-9194.
https://doi.org/10.1523/JNEUROSCI.20-24-09187.2000

[52]. Darland, T.; Dowling, J. E. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (20), 11691-11696.
https://doi.org/10.1073/pnas.191380698

[53]. Mann, K. D.; Turnell, E. R.; Atema, J.; Gerlach, G. Biol. Bull. 2003, 205 (2), 224-225.
https://doi.org/10.2307/1543264

[54]. Engeszer, R. E.; Ryan, M. J.; Parichy, D. M. Curr. Biol. 2004, 14 (10), 881-884.
https://doi.org/10.1016/j.cub.2004.04.042

[55]. Norton, W. H. J.; Manceau, L.; Reichmann, F. The Visually Mediated Social Preference Test: A Novel Technique to Measure Social Behavior and Behavioral Disturbances in Zebrafish. In Methods in Molecular Biology; Springer New York: New York, NY, 2019; pp 121-132.
https://doi.org/10.1007/978-1-4939-9554-7_8

[56]. Egan, R. J.; Bergner, C. L.; Hart, P. C.; Cachat, J. M.; Canavello, P. R.; Elegante, M. F.; Elkhayat, S. I.; Bartels, B. K.; Tien, A. K.; Tien, D. H.; Mohnot, S.; Beeson, E.; Glasgow, E.; Amri, H.; Zukowska, Z.; Kalueff, A. V. Behav. Brain Res. 2009, 205 (1), 38-44.
https://doi.org/10.1016/j.bbr.2009.06.022

[57]. Airhart, M. J.; Lee, D. H.; Wilson, T. D.; Miller, B. E.; Miller, M. N.; Skalko, R. G. Neurotoxicol. Teratol. 2007, 29 (6), 652-664.
https://doi.org/10.1016/j.ntt.2007.07.005

[58]. Abreu, M. S. de; Koakoski, G.; Ferreira, D.; Oliveira, T. A.; Rosa, J. G. S. da; Gusso, D.; Giacomini, A. C. V.; Piato, A. L.; Barcellos, L. J. G. PLoS One 2014, 9 (7), e103232.
https://doi.org/10.1371/journal.pone.0103232

[59]. Williams, F. E.; White, D.; Messer, W. S., Jr. Processes 2002, 58 (3), 125-132.
https://doi.org/10.1016/S0376-6357(02)00025-6

[60]. Müller, T. E.; Fontana, B. D.; Bertoncello, K. T.; Franscescon, F.; Mezzomo, N. J.; Canzian, J.; Stefanello, F. V.; Parker, M. O.; Gerlai, R.; Rosemberg, D. B. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2020, 100 (109873), 109873.
https://doi.org/10.1016/j.pnpbp.2020.109873

[61]. Levin, E. D.; Bencan, Z.; Cerutti, D. T. Physiol. Behav. 2007, 90 (1), 54-58.
https://doi.org/10.1016/j.physbeh.2006.08.026

[62]. Gerlai, R.; Lee, V.; Blaser, R. Pharmacol. Biochem. Behav. 2006, 85 (4), 752-761.
https://doi.org/10.1016/j.pbb.2006.11.010

[63]. Boiangiu, R. S.; Mihasan, M.; Gorgan, D. L.; Stache, B. A.; Hritcu, L. Antioxidants (Basel) 2021, 10 (2), 212.
https://doi.org/10.3390/antiox10020212

[64]. Singer, M. L.; Oreschak, K.; Rhinehart, Z.; Robison, B. D. PeerJ 2016, 4 (e2352), e2352.
https://doi.org/10.7717/peerj.2352

[65]. Stewart, A. M.; Braubach, O.; Spitsbergen, J.; Gerlai, R.; Kalueff, A. V. Trends Neurosci. 2014, 37 (5), 264-278.
https://doi.org/10.1016/j.tins.2014.02.011

[66]. Pitchai, A.; Rajaretinam, R. K.; Freeman, J. L. Medicines (Basel) 2019, 6 (2), 61.
https://doi.org/10.3390/medicines6020061

[67]. Dorsey, E. R.; Glidden, A. M.; Holloway, M. R.; Birbeck, G. L.; Schwamm, L. H. Nat. Rev. Neurol. 2018, 14 (5), 285-297.
https://doi.org/10.1038/nrneurol.2018.31

[68]. Pohl, F.; Kong Thoo Lin, P. Molecules 2018, 23 (12), 3283.
https://doi.org/10.3390/molecules23123283

[69]. Blomme, E. A. G.; Will, Y. Res. Toxicol. 2016, 29 (4), 473-504.
https://doi.org/10.1021/acs.chemrestox.5b00407

[70]. Yoganantharjah, P.; Gibert, Y. Curr. Top. Med. Chem. 2017, 17 (18), 2041-2055. https://doi.org/10.2174/1568026617666170130112109.
https://doi.org/10.2174/1568026617666170130112109

[71]. Humphreys, W. G.; Will, Y.; Guengerich, F. P. Chem. Res. Toxicol. 2016, 29 (4), 437-437.
https://doi.org/10.1021/acs.chemrestox.6b00049

[72]. Lee, K. Y.; Jang, G. H.; Byun, C. H.; Jeun, M.; Searson, P. C.; Lee, K. H. Biosci. Rep. 2017, 37 (3), BSR20170199. https://doi.org/10.1042/ bsr20170199.
https://doi.org/10.1042/BSR20170199

[73]. Rico, E. P.; Rosemberg, D. B.; Seibt, K. J.; Capiotti, K. M.; Da Silva, R. S.; Bonan, C. D. Neurotoxicol. Teratol. 2011, 33 (6), 608-617.
https://doi.org/10.1016/j.ntt.2011.07.007

[74]. Burns, C. G.; Milan, D. J.; Grande, E. J.; Rottbauer, W.; MacRae, C. A.; Fishman, M. C. Nat. Chem. Biol. 2005, 1 (5), 263-264.
https://doi.org/10.1038/nchembio732

[75]. de Esch, C.; Slieker, R.; Wolterbeek, A.; Woutersen, R.; de Groot, D. Neurotoxicol. Teratol. 2012, 34 (6), 545-553.
https://doi.org/10.1016/j.ntt.2012.08.006

[76]. Cassar, S.; Dunn, C.; Olson, A.; Buck, W.; Fossey, S.; Ramos, M. F.; Sancheti, P.; Stolarik, D.; Britton, H.; Cole, T.; Bratcher, N.; Huang, X.; Peterson, R.; Longenecker, K.; LeRoy, B. Toxicol. Sci. 2018, 161 (2), 300-309.
https://doi.org/10.1093/toxsci/kfx212

[77]. Fleming, A.; Diekmann, H.; Goldsmith, P. PLoS One 2013, 8 (10), e77548.
https://doi.org/10.1371/journal.pone.0077548

[78]. Watanabe, K.; Nishimura, Y.; Nomoto, T.; Umemoto, N.; Zhang, Z.; Zhang, B.; Kuroyanagi, J.; Shimada, Y.; Shintou, T.; Okano, M.; Miyazaki, T.; Imamura, T.; Tanaka, T. BMC Neurosci. 2012, 13 (1), 101. https://doi.org/10.1186/1471-2202-13-101.
https://doi.org/10.1186/1471-2202-13-101

[79]. Rubinstein, A. L. Expert Opin. Drug Metab. Toxicol. 2006, 2 (2), 231-240.
https://doi.org/10.1517/17425255.2.2.231

[80]. Maes, J.; Verlooy, L.; Buenafe, O. E.; de Witte, P. A. M.; Esguerra, C. V.; Crawford, A. D. PLoS One 2012, 7 (10), e43850.
https://doi.org/10.1371/journal.pone.0043850

[81]. Bailey, J. M.; Oliveri, A. N.; Levin, E. D. Pharmacol. Biochem. Behav. 2015, 139 Pt B, 103-111.
https://doi.org/10.1016/j.pbb.2015.03.006

[82]. d'Amora, M.; Cassano, D.; Pocoví-Martínez, S.; Giordani, S.; Voliani, V. Nanotoxicology 2018, 12 (8), 914-922.
https://doi.org/10.1080/17435390.2018.1498551

[83]. Quevedo, C.; Behl, M.; Ryan, K.; Paules, R. S.; Alday, A.; Muriana, A.; Alzualde, A. Toxicol. Sci. 2019, 168 (1), 225-240.
https://doi.org/10.1093/toxsci/kfy291

[84]. Geraci, C.; Heidel, D.; Sayes, C.; Hodson, L.; Schulte, P.; Eastlake, A.; Brenner, S. J. Nanopart. Res. 2015, 17 (9), 366.
https://doi.org/10.1007/s11051-015-3152-9

[85]. Jeevanandam, J.; Barhoum, A.; Chan, Y. S.; Dufresne, A.; Danquah, M. K. Beilstein J. Nanotechnol. 2018, 9, 1050-1074.
https://doi.org/10.3762/bjnano.9.98

[86]. Gupta, R.; Xie, H. J. Environ. Pathol. Toxicol. Oncol. 2018, 37 (3), 209-230.
https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009

[87]. Darweesh, R. S.; Ayoub, N. M.; Nazzal, S. Int. J. Nanomedicine 2019, 14, 7643-7663.
https://doi.org/10.2147/IJN.S223941

[88]. Haque, E.; Ward, A. Nanomaterials (Basel) 2018, 8 (7), 561.
https://doi.org/10.3390/nano8070561

[89]. Duncan, B.; Kim, C.; Rotello, V. M. J. Control. Release 2010, 148 (1), 122-127.
https://doi.org/10.1016/j.jconrel.2010.06.004

[90]. Panzarini, E.; Mariano, S.; Carata, E.; Mura, F.; Rossi, M.; Dini, L. Int. J. Mol. Sci. 2018, 19 (5), 1305.
https://doi.org/10.3390/ijms19051305

[91]. Zhu, M.; Nie, G.; Meng, H.; Xia, T.; Nel, A.; Zhao, Y. Acc. Chem. Res. 2013, 46 (3), 622-631.
https://doi.org/10.1021/ar300031y

[92]. Kim, K.-T.; Zaikova, T.; Hutchison, J. E.; Tanguay, R. L. Toxicol. Sci. 2013, 133 (2), 275-288.
https://doi.org/10.1093/toxsci/kft081

[93]. Ahangari, A.; Salouti, M.; Heidari, Z.; Kazemizadeh, A. R.; Safari, A. A. Drug Deliv. 2013, 20 (1), 34-39.
https://doi.org/10.3109/10717544.2012.746402

[94]. Zhao, Y.; Jiang, X. Nanoscale 2013, 5 (18), 8340.
https://doi.org/10.1039/c3nr01990j

[95]. Javed, I.; Peng, G.; Xing, Y.; Yu, T.; Zhao, M.; Kakinen, A.; Faridi, A.; Parish, C. L.; Ding, F.; Davis, T. P.; Ke, P. C.; Lin, S. Nat. Commun. 2019, 10 (1), 3780. https://doi.org/10.1038/s41467-019-11762-0.
https://doi.org/10.1038/s41467-019-11762-0

[96]. He, Z.; Li, C.; Zhang, X.; Zhong, R.; Wang, H.; Liu, J.; Du, L. Artif. Cells Nanomed. Biotechnol. 2018, 46 (sup2), 720-726.
https://doi.org/10.1080/21691401.2018.1468769

[97]. Johnston, H. J.; Verdon, R.; Gillies, S.; Brown, D. M.; Fernandes, T. F.; Henry, T. B.; Rossi, A. G.; Tran, L.; Tucker, C.; Tyler, C. R.; Stone, V. Crit. Rev. Toxicol. 2018, 48 (3), 252-271.
https://doi.org/10.1080/10408444.2017.1404965

[98]. He, J.-H.; Gao, J.-M.; Huang, C.-J.; Li, C.-Q. Neurotoxicol. Teratol. 2014, 42, 35-42.
https://doi.org/10.1016/j.ntt.2014.01.006

Supporting Agencies

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).