European Journal of Chemistry 2021, 12(4), 361-367 | doi: https://doi.org/10.5155/eurjchem.12.4.361-367.2155 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Highly efficient fluorescence resonance energy transfer in co-encapsulated BODIPY nanoparticles


Priyadarshine Hewavitharanage (1,*) orcid , Launa Steele (2) orcid , Isaac Dickenson (3) orcid

(1) Department of Chemistry, University of Southern Indiana, Evansville, Indiana 47712, USA
(2) Department of Chemistry, University of Southern Indiana, Evansville, Indiana 47712, USA
(3) Department of Chemistry, University of Southern Indiana, Evansville, Indiana 47712, USA
(*) Corresponding Author

Received: 18 Jul 2021 | Revised: 20 Aug 2021 | Accepted: 28 Aug 2021 | Published: 31 Dec 2021 | Issue Date: December 2021

Abstract


Fluorescence resonance energy transfer (FRET) is a powerful tool used in a wide range of applications due to its high sensitivity and many other advantages. Co-encapsulation of a donor and an acceptor in nanoparticles is a useful strategy to bring the donor-acceptor pair in proximity for FRET. A highly efficient FRET system based on BODIPY-BODIPY (BODIPY:  boron-dipyrromethene) donor-acceptor pair in nanoparticles was synthesized. Nanoparticles were formed by co-encapsulating a green emitting BODIPY derivative (FRET donor, lmax = 501 nm) and a red emitting BODIPY derivative (FRET acceptor, lmax = 601 nm) in an amphiphilic polymer using the precipitation method. Fluorescence measurements of encapsulated BODIPY in water following 501 nm excitation caused a 3.6 fold enhancement of the acceptor BODIPY emission at 601 nm indicating efficient energy transfer between the green emitting donor BODIPY and the red emitting BODIPY acceptor with a 100 nm Stokes shift. The calculated FRET efficiency was 96.5%. Encapsulated BODIPY derivatives were highly stable under our experimental conditions.


Keywords


Encapsulation; Amphiphilic polymer; Polymer nanoparticles; Fluorescence enhancement; Boron-dipyrromethene (BODIPY); Fluorescence resonance energy transfer

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.4.361-367.2155

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 92 times | icon graph PDF Article downloaded 17 times

Funding information


University of Southern Indiana, Evansville, Indiana 47712, USA

References


[1]. Hewavitharanage, P.; Warshawsky, R.; Rosokha, S. V.; Vaal, J.; Stickler, K.; Bachynsky, D.; Jairath, N. Tetrahedron 2020, 76 (42), 131515-131525.
https://doi.org/10.1016/j.tet.2020.131515

[2]. Barin, G.; Yilmaz, M. D.; Akkaya, E. U. Tetrahedron Lett. 2009, 50 (15), 1738-1740.
https://doi.org/10.1016/j.tetlet.2009.01.141

[3]. Sharma, R.; Gobeze, H. B.; D'Souza, F.; Ravikanth, M. ChemPhysChem 2016, 17 (16), 2516-2524.
https://doi.org/10.1002/cphc.201600317

[4]. Sapsford, K. E.; Berti, L.; Medintz, I. L. Angew. Chem. Int. Ed Engl. 2006, 45 (28), 4562-4589.
https://doi.org/10.1002/anie.200503873

[5]. Förster, T. Ann. Phys. 1948, 437 (1-2), 55-75.
https://doi.org/10.1002/andp.19484370105

[6]. Dexter, D. L. J. Chem. Phys. 1953, 21 (5), 836-850.
https://doi.org/10.1063/1.1699044

[7]. Al-Omari, S. J. Biol. Phys. 2016, 42 (3), 373-382.
https://doi.org/10.1002/cbin.10914

[8]. McConnell, H. M. J. Chem. Phys. 1961, 35 (2), 508-515.
https://doi.org/10.1063/1.1731961

[9]. Pourtois, G.; Beljonne, D.; Cornil, J.; Ratner, M. A.; Brédas, J. L. J. Am. Chem. Soc. 2002, 124 (16), 4436-4447.
https://doi.org/10.1021/ja017150+

[10]. Principles of Fluorescence Spectroscopy; Lakowicz, J. R., Ed.; Springer US: Boston, MA, 2006.

[11]. Bhuckory, S.; Kays, J. C.; Dennis, A. M. Biosensors (Basel) 2019, 9 (2), 76-111.
https://doi.org/10.3390/bios9020076

[12]. Chen, G.; Song, F.; Xiong, X.; Peng, X. Ind. Eng. Chem. Res. 2013, 52 (33), 11228-11245.
https://doi.org/10.1021/ie303485n

[13]. Rainey, K. H.; Patterson, G. H. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (3), 864-873.
https://doi.org/10.1073/pnas.1805333116

[14]. Zohoorian-Abootorabi, T.; Sanee, H.; Iranfar, H.; Saberi, M. R.; Chamani, J. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 88, 177-191.
https://doi.org/10.1016/j.saa.2011.12.026

[15]. Blouin, S.; Craggs, T. D.; Lafontaine, D. A.; Penedo, J. C. Methods Mol. Biol. 2009, 543, 475-502.
https://doi.org/10.1007/978-1-60327-015-1_28

[16]. Gustiananda, M.; Liggins, J. R.; Cummins, P. L.; Gready, J. E. Biophys. J. 2004, 86 (4), 2467-2483.
https://doi.org/10.1016/S0006-3495(04)74303-9

[17]. Yang, J.; Chen, H.; Vlahov, I. R.; Cheng, J.-X.; Low, P. S. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (37), 13872-13877.
https://doi.org/10.1073/pnas.0601455103

[18]. Liu, Y.; Yang, G.; Jin, S.; Zhang, R.; Chen, P.; Tengjisi; Wang, L.; Chen, D.; Weitz, D. A.; Zhao, C.-X. Angew. Chem. Int. Ed Engl. 2020, 59 (45), 20065-20074.
https://doi.org/10.1002/anie.202008018

[19]. Yuan, L.; Lin, W.; Zheng, K.; Zhu, S. Acc. Chem. Res. 2013, 46 (7), 1462-1473.
https://doi.org/10.1021/ar300273v

[20]. Hu, R.; Zhang, X.; Zhao, Z.; Zhu, G.; Chen, T.; Fu, T.; Tan, W. Angew. Chem. Int. Ed Engl. 2014, 53 (23), 5821-5826.
https://doi.org/10.1002/anie.201400323

[21]. Rajdev, P.; Ghosh, S. J. Phys. Chem. B 2019, 123 (2), 327-342.
https://doi.org/10.1021/acs.jpcb.8b09441

[22]. Saxena, S.; Pradeep, A.; Jayakannan, M. ACS Appl. Bio Mater. 2019, 2 (12), 5245-5262.
https://doi.org/10.1021/acsabm.9b00450

[23]. Benniston, A. C.; Copley, G. Phys. Chem. Chem. Phys. 2009, 11 (21), 4124-4131.
https://doi.org/10.1039/b901383k

[24]. Karolin, J.; Johansson, L. B.-A.; Strandberg, L.; Ny, T. J. Am. Chem. Soc. 1994, 116 (17), 7801-7806.
https://doi.org/10.1021/ja00096a042

[25]. Ziessel, R.; Ulrich, G.; Harriman, A. New J Chem 2007, 31 (4), 496-501.
https://doi.org/10.1039/b617972j

[26]. Ulrich, G.; Ziessel, R.; Harriman, A. Angew. Chem. Int. Ed Engl. 2008, 47 (7), 1184-1201.
https://doi.org/10.1002/anie.200702070

[27]. Patalag, L. J.; Hoche, J.; Holzapfel, M.; Schmiedel, A.; Mitric, R.; Lambert, C.; Werz, D. B. J. Am. Chem. Soc. 2021, 143 (19), 7414-7425.
https://doi.org/10.1021/jacs.1c01279

[28]. Hewavitharanage, P.; Nzeata, P.; Wiggins, J. Eur. J. Chem. 2012, 3 (1), 13-16.
https://doi.org/10.5155/eurjchem.3.1.13-16.543

[29]. Delmotte, C.; Delmas, A. Bioorg. Med. Chem. Lett. 1999, 9 (20), 2989-2994.
https://doi.org/10.1016/S0960-894X(99)00512-0

[30]. Laia, C. A. T.; Costa, S. M. B. Chem. Phys. Lett. 1998, 285 (5-6), 385-390.
https://doi.org/10.1016/S0009-2614(98)00092-X

[31]. Che, W.; Zhang, L.; Li, Y.; Zhu, D.; Xie, Z.; Li, G.; Zhang, P.; Su, Z.; Dou, C.; Tang, B. Z. Anal. Chem. 2019, 91 (5), 3467-3474.
https://doi.org/10.1021/acs.analchem.8b05024

[32]. Hu, W.; Ma, H.; Hou, B.; Zhao, H.; Ji, Y.; Jiang, R.; Hu, X.; Lu, X.; Zhang, L.; Tang, Y.; Fan, Q.; Huang, W. ACS Appl. Mater. Interfaces 2016, 8 (19), 12039-12047.
https://doi.org/10.1021/acsami.6b02721

[33]. Swider, E.; Maharjan, S.; Houkes, K.; van Riessen, N. K.; Figdor, C.; Srinivas, M.; Tagit, O. ACS Appl. Bio Mater. 2019, 2 (3), 1131-1140.
https://doi.org/10.1021/acsabm.8b00754

[34]. Adams, P. G.; Collins, A. M.; Sahin, T.; Subramanian, V.; Urban, V. S.; Vairaprakash, P.; Tian, Y.; Evans, D. G.; Shreve, A. P.; Montano, G. A. Nano Lett. 2015, 15 (4), 2422-2428.
https://doi.org/10.1021/nl504814x

[35]. Galvao, J.; Davis, B.; Tilley, M.; Normando, E.; Duchen, M. R.; Cordeiro, M. F. FASEB J. 2014, 28 (3), 1317-1330.
https://doi.org/10.1096/fj.13-235440

[36]. Takayama, R.; Inoue, Y.; Murata, I.; Kanamoto, I. Colloids interfaces 2020, 4 (3), 28.
https://doi.org/10.3390/colloids4030028

[37]. Hewavitharanage, P. Eur. J. Chem. 2012, 3 (4), 395-398.
https://doi.org/10.5155/eurjchem.3.4.395-398.693

[38]. Warshawsky, R.; Vaal, J.; Hewavitharanage, P. Eur. J. Chem. 2017, 8 (4), 321-327.
https://doi.org/10.5155/eurjchem.8.4.321-327.1634


How to cite


Hewavitharanage, P.; Steele, L.; Dickenson, I. Eur. J. Chem. 2021, 12(4), 361-367. doi:10.5155/eurjchem.12.4.361-367.2155
Hewavitharanage, P.; Steele, L.; Dickenson, I. Highly efficient fluorescence resonance energy transfer in co-encapsulated BODIPY nanoparticles. Eur. J. Chem. 2021, 12(4), 361-367. doi:10.5155/eurjchem.12.4.361-367.2155
Hewavitharanage, P., Steele, L., & Dickenson, I. (2021). Highly efficient fluorescence resonance energy transfer in co-encapsulated BODIPY nanoparticles. European Journal of Chemistry, 12(4), 361-367. doi:10.5155/eurjchem.12.4.361-367.2155
Hewavitharanage, Priyadarshine, Launa Steele, & Isaac Dickenson. "Highly efficient fluorescence resonance energy transfer in co-encapsulated BODIPY nanoparticles." European Journal of Chemistry [Online], 12.4 (2021): 361-367. Web. 17 Jan. 2022
Hewavitharanage, Priyadarshine, Steele, Launa, AND Dickenson, Isaac. "Highly efficient fluorescence resonance energy transfer in co-encapsulated BODIPY nanoparticles" European Journal of Chemistry [Online], Volume 12 Number 4 (31 December 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.4.361-367.2155

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(4), 361-367 | doi: https://doi.org/10.5155/eurjchem.12.4.361-367.2155 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.