European Journal of Chemistry

Highly efficient fluorescence resonance energy transfer in co-encapsulated BODIPY nanoparticles

Crossmark


Main Article Content

Priyadarshine Hewavitharanage
Launa Steele
Isaac Dickenson

Abstract

Fluorescence resonance energy transfer (FRET) is a powerful tool used in a wide range of applications due to its high sensitivity and many other advantages. Co-encapsulation of a donor and an acceptor in nanoparticles is a useful strategy to bring the donor-acceptor pair in proximity for FRET. A highly efficient FRET system based on BODIPY-BODIPY (BODIPY:  boron-dipyrromethene) donor-acceptor pair in nanoparticles was synthesized. Nanoparticles were formed by co-encapsulating a green emitting BODIPY derivative (FRET donor, lmax = 501 nm) and a red emitting BODIPY derivative (FRET acceptor, lmax = 601 nm) in an amphiphilic polymer using the precipitation method. Fluorescence measurements of encapsulated BODIPY in water following 501 nm excitation caused a 3.6 fold enhancement of the acceptor BODIPY emission at 601 nm indicating efficient energy transfer between the green emitting donor BODIPY and the red emitting BODIPY acceptor with a 100 nm Stokes shift. The calculated FRET efficiency was 96.5%. Encapsulated BODIPY derivatives were highly stable under our experimental conditions.


icon graph This Abstract was viewed 820 times | icon graph Article PDF downloaded 338 times

How to Cite
(1)
Hewavitharanage, P.; Steele, L.; Dickenson, I. Highly Efficient Fluorescence Resonance Energy Transfer in Co-Encapsulated BODIPY Nanoparticles. Eur. J. Chem. 2021, 12, 361-367.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Hewavitharanage, P.; Warshawsky, R.; Rosokha, S. V.; Vaal, J.; Stickler, K.; Bachynsky, D.; Jairath, N. Tetrahedron 2020, 76 (42), 131515-131525.
https://doi.org/10.1016/j.tet.2020.131515

[2]. Barin, G.; Yilmaz, M. D.; Akkaya, E. U. Tetrahedron Lett. 2009, 50 (15), 1738-1740.
https://doi.org/10.1016/j.tetlet.2009.01.141

[3]. Sharma, R.; Gobeze, H. B.; D'Souza, F.; Ravikanth, M. ChemPhysChem 2016, 17 (16), 2516-2524.
https://doi.org/10.1002/cphc.201600317

[4]. Sapsford, K. E.; Berti, L.; Medintz, I. L. Angew. Chem. Int. Ed Engl. 2006, 45 (28), 4562-4589.
https://doi.org/10.1002/anie.200503873

[5]. Förster, T. Ann. Phys. 1948, 437 (1-2), 55-75.
https://doi.org/10.1002/andp.19484370105

[6]. Dexter, D. L. J. Chem. Phys. 1953, 21 (5), 836-850.
https://doi.org/10.1063/1.1699044

[7]. Al-Omari, S. J. Biol. Phys. 2016, 42 (3), 373-382.
https://doi.org/10.1002/cbin.10914

[8]. McConnell, H. M. J. Chem. Phys. 1961, 35 (2), 508-515.
https://doi.org/10.1063/1.1731961

[9]. Pourtois, G.; Beljonne, D.; Cornil, J.; Ratner, M. A.; Brédas, J. L. J. Am. Chem. Soc. 2002, 124 (16), 4436-4447.
https://doi.org/10.1021/ja017150+

[10]. Principles of Fluorescence Spectroscopy; Lakowicz, J. R., Ed.; Springer US: Boston, MA, 2006.

[11]. Bhuckory, S.; Kays, J. C.; Dennis, A. M. Biosensors (Basel) 2019, 9 (2), 76-111.
https://doi.org/10.3390/bios9020076

[12]. Chen, G.; Song, F.; Xiong, X.; Peng, X. Ind. Eng. Chem. Res. 2013, 52 (33), 11228-11245.
https://doi.org/10.1021/ie303485n

[13]. Rainey, K. H.; Patterson, G. H. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (3), 864-873.
https://doi.org/10.1073/pnas.1805333116

[14]. Zohoorian-Abootorabi, T.; Sanee, H.; Iranfar, H.; Saberi, M. R.; Chamani, J. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 88, 177-191.
https://doi.org/10.1016/j.saa.2011.12.026

[15]. Blouin, S.; Craggs, T. D.; Lafontaine, D. A.; Penedo, J. C. Methods Mol. Biol. 2009, 543, 475-502.
https://doi.org/10.1007/978-1-60327-015-1_28

[16]. Gustiananda, M.; Liggins, J. R.; Cummins, P. L.; Gready, J. E. Biophys. J. 2004, 86 (4), 2467-2483.
https://doi.org/10.1016/S0006-3495(04)74303-9

[17]. Yang, J.; Chen, H.; Vlahov, I. R.; Cheng, J.-X.; Low, P. S. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (37), 13872-13877.
https://doi.org/10.1073/pnas.0601455103

[18]. Liu, Y.; Yang, G.; Jin, S.; Zhang, R.; Chen, P.; Tengjisi; Wang, L.; Chen, D.; Weitz, D. A.; Zhao, C.-X. Angew. Chem. Int. Ed Engl. 2020, 59 (45), 20065-20074.
https://doi.org/10.1002/anie.202008018

[19]. Yuan, L.; Lin, W.; Zheng, K.; Zhu, S. Acc. Chem. Res. 2013, 46 (7), 1462-1473.
https://doi.org/10.1021/ar300273v

[20]. Hu, R.; Zhang, X.; Zhao, Z.; Zhu, G.; Chen, T.; Fu, T.; Tan, W. Angew. Chem. Int. Ed Engl. 2014, 53 (23), 5821-5826.
https://doi.org/10.1002/anie.201400323

[21]. Rajdev, P.; Ghosh, S. J. Phys. Chem. B 2019, 123 (2), 327-342.
https://doi.org/10.1021/acs.jpcb.8b09441

[22]. Saxena, S.; Pradeep, A.; Jayakannan, M. ACS Appl. Bio Mater. 2019, 2 (12), 5245-5262.
https://doi.org/10.1021/acsabm.9b00450

[23]. Benniston, A. C.; Copley, G. Phys. Chem. Chem. Phys. 2009, 11 (21), 4124-4131.
https://doi.org/10.1039/b901383k

[24]. Karolin, J.; Johansson, L. B.-A.; Strandberg, L.; Ny, T. J. Am. Chem. Soc. 1994, 116 (17), 7801-7806.
https://doi.org/10.1021/ja00096a042

[25]. Ziessel, R.; Ulrich, G.; Harriman, A. New J Chem 2007, 31 (4), 496-501.
https://doi.org/10.1039/b617972j

[26]. Ulrich, G.; Ziessel, R.; Harriman, A. Angew. Chem. Int. Ed Engl. 2008, 47 (7), 1184-1201.
https://doi.org/10.1002/anie.200702070

[27]. Patalag, L. J.; Hoche, J.; Holzapfel, M.; Schmiedel, A.; Mitric, R.; Lambert, C.; Werz, D. B. J. Am. Chem. Soc. 2021, 143 (19), 7414-7425.
https://doi.org/10.1021/jacs.1c01279

[28]. Hewavitharanage, P.; Nzeata, P.; Wiggins, J. Eur. J. Chem. 2012, 3 (1), 13-16.
https://doi.org/10.5155/eurjchem.3.1.13-16.543

[29]. Delmotte, C.; Delmas, A. Bioorg. Med. Chem. Lett. 1999, 9 (20), 2989-2994.
https://doi.org/10.1016/S0960-894X(99)00512-0

[30]. Laia, C. A. T.; Costa, S. M. B. Chem. Phys. Lett. 1998, 285 (5-6), 385-390.
https://doi.org/10.1016/S0009-2614(98)00092-X

[31]. Che, W.; Zhang, L.; Li, Y.; Zhu, D.; Xie, Z.; Li, G.; Zhang, P.; Su, Z.; Dou, C.; Tang, B. Z. Anal. Chem. 2019, 91 (5), 3467-3474.
https://doi.org/10.1021/acs.analchem.8b05024

[32]. Hu, W.; Ma, H.; Hou, B.; Zhao, H.; Ji, Y.; Jiang, R.; Hu, X.; Lu, X.; Zhang, L.; Tang, Y.; Fan, Q.; Huang, W. ACS Appl. Mater. Interfaces 2016, 8 (19), 12039-12047.
https://doi.org/10.1021/acsami.6b02721

[33]. Swider, E.; Maharjan, S.; Houkes, K.; van Riessen, N. K.; Figdor, C.; Srinivas, M.; Tagit, O. ACS Appl. Bio Mater. 2019, 2 (3), 1131-1140.
https://doi.org/10.1021/acsabm.8b00754

[34]. Adams, P. G.; Collins, A. M.; Sahin, T.; Subramanian, V.; Urban, V. S.; Vairaprakash, P.; Tian, Y.; Evans, D. G.; Shreve, A. P.; Montano, G. A. Nano Lett. 2015, 15 (4), 2422-2428.
https://doi.org/10.1021/nl504814x

[35]. Galvao, J.; Davis, B.; Tilley, M.; Normando, E.; Duchen, M. R.; Cordeiro, M. F. FASEB J. 2014, 28 (3), 1317-1330.
https://doi.org/10.1096/fj.13-235440

[36]. Takayama, R.; Inoue, Y.; Murata, I.; Kanamoto, I. Colloids interfaces 2020, 4 (3), 28.
https://doi.org/10.3390/colloids4030028

[37]. Hewavitharanage, P. Eur. J. Chem. 2012, 3 (4), 395-398.
https://doi.org/10.5155/eurjchem.3.4.395-398.693

[38]. Warshawsky, R.; Vaal, J.; Hewavitharanage, P. Eur. J. Chem. 2017, 8 (4), 321-327.
https://doi.org/10.5155/eurjchem.8.4.321-327.1634

Supporting Agencies

University of Southern Indiana, Evansville, Indiana 47712, USA
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).