European Journal of Chemistry 2021, 12(4), 401-411 | doi: https://doi.org/10.5155/eurjchem.12.4.401-411.2165 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Investigations on spectroscopic characterizations, molecular docking, NBO, drug-Likeness, and ADME properties of 4H-1,2,4-triazol-4-amine by combined computational approach


Sibel Celik (1,*) orcid , Senay Yurdakul (2) orcid

(1) Department of Health Care Services, Ahi Evran University, Kırşehir, 40100, Turkey
(2) Department of Physics, Faculty of Science, Gazi University, Ankara, 06500, Turkey
(*) Corresponding Author

Received: 29 Jul 2021 | Revised: 13 Sep 2021 | Accepted: 14 Sep 2021 | Published: 31 Dec 2021 | Issue Date: December 2021

Abstract


In this study, the spectroscopic characterization, frontier molecular orbital analysis, and natural bond orbital analysis (NBO) analysis were executed to determine the movement of electrons within the molecule and the stability, and charge delocalization of the 4H-1,2,4-triazol-4-amine (4-AHT) through density functional theory (DFT) approach and B3LYP/6-311++G(d,p) level of theory. Surface plots of the hybrids’ Molecular Electrostatic Potential (MEP) revealed probable electrophilic and nucleophilic attacking sites. The discussed ligand were observed to be characterized by various spectral studies (FT-IR, UV-Vis). The calculated IR was found to be correlated with experimental values. The UV-Vis data of the molecule was used to analyze the visible absorption maximum (λmax) using the time-dependent DFT method. Since the principle of drug-likeness is usually used in combinatorial chemistry to minimize depletion in pharmacological investigations and growth, drug-likeness and ADME properties were calculated in this research to establish 4-AHT molecule bioavailability. Furthermore, molecular docking studies were carried out. Molecular docking analysis was performed for the title ligand inside the active site of the Epidermal Growth Factor Receptor (EGFR). The title compound’s anti-tumor activity against the cancer cell, in which EGFR is strongly expressed, prompted us to conduct molecular docking into the ATP binding site of EGFR to predict whether this molecule has an analogous binding mode to the EGFR inhibitors (PDB: ID: 1M17).


Keywords


DFT; ADME; Drug-Likeness; Molecular docking; Vibrational spectra; 4H-1,2,4-Triazol-4-amine

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.4.401-411.2165

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 88 times | icon graph PDF Article downloaded 21 times


References


[1]. Haasnoot, J. G. Coord. Chem. Rev. 2000, 200-202, 131-185.
https://doi.org/10.1016/S0010-8545(00)00266-6

[2]. Zhang, J.-P.; Zhang, Y.-B.; Lin, J.-B.; Chen, X.-M. Chem. Rev. 2012, 112 (2), 1001-1033.
https://doi.org/10.1021/cr200139g

[3]. Naik, A. D.; Dîrtu, M. M.; Railliet, A. P.; Marchand-Brynaert, J.; Garcia, Y. Polymers (Basel) 2011, 3 (4), 1750-1775.
https://doi.org/10.3390/polym3041750

[4]. El-Sherief, H. A.; Abuo-Rahma, G. E.-D. A.; Shoman, M. E.; Beshr, E. A.; Abdel-baky, R. M. Med. Chem. Res. 2017, 26 (12), 3077-3090.
https://doi.org/10.1007/s00044-017-2004-9

[5]. El Shehry, M. F.; Abu-Hashem, A. A.; El-Telbani, E. M. Eur. J. Med. Chem. 2010, 45 (5), 1906-1911.
https://doi.org/10.1016/j.ejmech.2010.01.030

[6]. Mathew, V.; Keshavayya, J.; Vaidya, V. P.; Giles, D. Eur. J. Med. Chem. 2007, 42 (6), 823-840.
https://doi.org/10.1016/j.ejmech.2006.12.010

[7]. Holla, B. S.; Poojary, K. N.; Rao, B. S.; Shivananda, M. K. Eur. J. Med. Chem. 2002, 37 (6), 511-517.
https://doi.org/10.1016/S0223-5234(02)01358-2

[8]. Padmavathi, V.; Sudhakar Reddy, G.; Padmaja, A.; Kondaiah, P.; Ali-Shazia. Eur. J. Med. Chem. 2009, 44 (5), 2106-2112.
https://doi.org/10.1016/j.ejmech.2008.10.012

[9]. Liu, X.-H.; Pan, L.; Tan, C.-X.; Weng, J.-Q.; Wang, B.-L.; Li, Z.-M. Pestic. Biochem. Physiol. 2011, 101 (3), 143-147.
https://doi.org/10.1016/j.pestbp.2011.08.006

[10]. Ohno, N.; Fujimoto, K.; Okuno, Y.; Mizutani, T.; Hirano, M.; Itaya, N.; Honda, T.; Yoshioka, H. Agric. Biol. Chem. 1974, 38 (4), 881-883.
https://doi.org/10.1080/00021369.1974.10861252

[11]. Liu, X. H.; Weng, J. Q.; Tan, C. X.; Pan, L.; Wang, B. L; Li, Z. M, Asian J. Chem. 2011, 23, 4031-4036.

[12]. Xue, Y. L; Zhang, Y. G; Liu, X. H. Asian J. Chem. 2012, 24, 5087-5089.

[13]. Bräunlich, I.; Medvedev, M.; Dshemuchadse, J.; Wörle, M.; Caseri, W. Z. Anorg. Allg. Chem. 2015, 641 (12-13), 2344-2349.
https://doi.org/10.1002/zaac.201500234

[14]. Dîrtu, M. M.; Boland, Y.; Gillard, D.; Tinant, B.; Robeyns, K.; Safin, D. A.; Devlin, E.; Sanakis, Y.; Garcia, Y. Int. J. Mol. Sci. 2013, 14 (12), 23597-23613.
https://doi.org/10.3390/ijms141223597

[15]. Kavlakova, M.; Bakalova, A.; Momekov, G.; Ivanov, D. J. Coord. Chem. 2010, 63 (20), 3531-3540.
https://doi.org/10.1080/00958972.2010.516432

[16]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 09, Inc., Wallingford CT, 2009.

[17]. GaussView, Version 5, Dennington, R.; Keith, T. A.; Millam, J. M. Semichem Inc., Shawnee Mission, KS, 2009

[18]. O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. J. Comput. Chem. 2008, 29 (5), 839-845.
https://doi.org/10.1002/jcc.20823

[19]. Amat, A.; Clementi, C.; De Angelis, F.; Sgamellotti, A.; Fantacci, S. J. Phys. Chem. A 2009, 113 (52), 15118-15126.
https://doi.org/10.1021/jp9052538

[20]. PQS Version 3.1, Parallel Quantum Solutions, 2013 Green Acres Road, Fayetteville, Arkansas, AR72703, USA.

[21]. Yurdakul, Ş.; Tanrıbuyurdu, S. J. Mol. Struct. 2013, 1052, 57-66.
https://doi.org/10.1016/j.molstruc.2013.08.046

[22]. Molinspiration Cheminformatics free web services,

https://www.molinspiration.com, Slovensky Grob, Slovakia (accessed Sep 10, 2021).

[23]. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Deliv. Rev. 2012, 64 (SUPPL.), 4-17.
https://doi.org/10.1016/j.addr.2012.09.019

[24]. Bioinformatics and Molecular Design Research Center, Seul, South Corea, PreADMET program, 2004. Available from: URL: http://preadmet.bmdrc.org (accessed Sep 10, 2021).

[25]. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. J. Comput. Chem. 1998, 19 (14), 1639-1662.
https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

[26]. BIOVIA, Dassault Systèmes, Discovery Studio Visualizer, v17.2.0.16349, San Diego: Dassault Systèmes, 2016.

[27]. De Lano, W. L.; Carlos, D. L. S.; California, U. S. A. PyMOL: An open-source molecular graphics tool

http://legacy.ccp4.ac.uk/newsletters/newsletter40/11_pymol.pdf (accessed Sep 14, 2021).

[28]. Said, M.; Boughzala, H. Acta Crystallogr. E Crystallogr. Commun. 2018, 74 (Pt 2), 147-150.
https://doi.org/10.1107/S2056989018000464

[29]. Singh, H.; Singh, A.; Khurana, J. M. J. Mol. Struct. 2017, 1147, 725-734.
https://doi.org/10.1016/j.molstruc.2017.07.010

[30]. Joshi, R.; Pandey, N.; Yadav, S. K.; Tilak, R.; Mishra, H.; Pokharia, S. J. Mol. Struct. 2018, 1164, 386-403.
https://doi.org/10.1016/j.molstruc.2018.03.081

[31]. Drozd, M. J. Mol. Struct. 2018, 1155, 776-788.
https://doi.org/10.1016/j.molstruc.2017.11.060

[32]. Bytheway, I.; Wong, M. W. Chem. Phys. Lett. 1998, 282 (3-4), 219-226.
https://doi.org/10.1016/S0009-2614(97)01281-5

[33]. Koleva, B. B.; Kolev, T.; Seidel, R. W.; Spiteller, M.; Mayer-Figge, H.; Sheldrick, W. S. J. Phys. Chem. A 2009, 113 (13), 3088-3095.
https://doi.org/10.1021/jp8106233

[34]. Kolev, T.; Koleva, B. B.; Seidel, R. W.; Spiteller, M.; Sheldrick, W. S. Cryst. Growth Des. 2009, 9 (8), 3348-3352.
https://doi.org/10.1021/cg900188k

[35]. Ivanova, B. B.; Mayer-Figge, H. J. Coord. Chem. 2005, 58 (8), 653-659.
https://doi.org/10.1080/00958970412331336295

[36]. Koleva, B. B.; Trendafilova, E. N.; Arnaudov, M. G.; Sheldrick, W. S.; Mayer-Figge, H. Transit. Met. Chem. 2006, 31 (7), 866-873.
https://doi.org/10.1007/s11243-006-0078-1

[37]. Tankov, I.; Yankova, R. J. Mol. Struct. 2019, 1179, 581-592.
https://doi.org/10.1016/j.molstruc.2018.11.050

[38]. Tamer, Ö.; Bhatti, M. H.; Yunus, U.; Nadeem, M.; Avcı, D.; Atalay, Y.; Yaqub, A.; Quershi, R. J. Mol. Struct. 2017, 1133, 329-337.
https://doi.org/10.1016/j.molstruc.2016.12.017

[39]. Chai, J.-D.; Head-Gordon, M. J. Chem. Phys. 2008, 128 (8), 084106.
https://doi.org/10.1063/1.2834918

[40]. Khajehzadeh, M.; Moghadam, M. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 180, 51-66.

[41]. Amul, B.; Muthu, S.; Raja, M.; Sevvanthi, S. J. Mol. Struct. 2019, 1195, 747-761.
https://doi.org/10.1016/j.molstruc.2019.06.047

[42]. Ramesh, P.; Lydia Caroline, M.; Muthu, S.; Narayana, B.; Raja, M.; Aayisha, S. J. Mol. Struct. 2020, 1200 (127123), 127123.
https://doi.org/10.1016/j.molstruc.2019.127123

[43]. Srivastava, A. K.; Kumar, A.; Misra, N.; Manjula, P. S.; Sarojini, B. K.; Narayana, B. J. Mol. Struct. 2016, 1107, 137-144.
https://doi.org/10.1016/j.molstruc.2015.11.042

[44]. Alyar, S.; Şen, T.; Özmen, Ü. Ö.; Alyar, H.; Adem, Ş.; Şen, C. J. Mol. Struct. 2019, 1185, 416-424.
https://doi.org/10.1016/j.molstruc.2019.03.002

[45]. Mondal, S.; Mandal, S. M.; Mondal, T. K.; Sinha, C. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 150, 268-279.
https://doi.org/10.1016/j.saa.2015.05.049

[46]. Banuppriya, G.; Sribalan, R.; Padmini, V. J. Mol. Struct. 2018, 1155, 90-100.
https://doi.org/10.1016/j.molstruc.2017.10.097

[47]. Pangh, A.; Behzadi, H.; Ghaemi, M.; Sadani, S. Comput. Theor. Chem. 2019, 1155, 47-55.
https://doi.org/10.1016/j.comptc.2019.03.024

[48]. Sivaprakash, S.; Prakash, S.; Mohan, S.; Jose, S. P. Heliyon 2019, 5 (7), e02149.
https://doi.org/10.1016/j.heliyon.2019.e02149

[49]. Barim, E.; Akman, F. J. Mol. Struct. 2019, 1195, 506-513.
https://doi.org/10.1016/j.molstruc.2019.06.015

[50]. Santhy, K. R.; Sweetlin, M. D.; Muthu, S.; Kuruvilla, T. K.; Abraham, C. S. J. Mol. Struct. 2019, 1177, 401-417.
https://doi.org/10.1016/j.molstruc.2018.09.058

[51]. Celik, S.; Alp, M.; Yurdakul, S. Spectrosc. Lett. 2020, 53 (4), 234-248.
https://doi.org/10.1080/00387010.2020.1734840

[52]. Zhang, Y.; Zhang, X.; Qiao, L.; Ding, Z.; Hang, X.; Qin, B.; Song, J.; Huang, J. J. Mol. Struct. 2019, 1176, 335-345.
https://doi.org/10.1016/j.molstruc.2018.08.069

[53]. Lipinski, C. A. Drug Discov. Today Technol. 2004, 1 (4), 337-341.
https://doi.org/10.1016/j.ddtec.2004.11.007

[54]. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Deliv. Rev. 1997, 23 (1-3), 3-25.
https://doi.org/10.1016/S0169-409X(96)00423-1

[55]. Aayisha, S.; Renuga Devi, T. S.; Janani, S.; Muthu, S.; Raja, M.; Sevvanthi, S. J. Mol. Struct. 2019, 1186, 468-481.
https://doi.org/10.1016/j.molstruc.2019.03.056

[56]. Belkhir-Talbi, D.; Makhloufi-Chebli, M.; Terrachet-Bouaziz, S.; Hikem-Oukacha, D.; Ghemmit, N.; Ismaili, L.; M.S Silva, A.; Hamdi, M. J. Mol. Struct. 2019, 1179, 495-505.
https://doi.org/10.1016/j.molstruc.2018.11.035

[57]. El-Sherief, H. A. M.; Youssif, B. G. M.; Bukhari, S. N. A.; Abdel-Aziz, M.; Abdel-Rahman, H. M. Bioorg. Chem. 2018, 76, 314-325.
https://doi.org/10.1016/j.bioorg.2017.12.013

[58]. Stamos, J.; Sliwkowski, M. X.; Eigenbrot, C. J. Biol. Chem. 2002, 277 (48), 46265-46272.
https://doi.org/10.1074/jbc.M207135200

[59]. Abdelazeem, A. H.; El-Saadi, M. T.; Said, E. G.; Youssif, B. G. M.; Omar, H. A.; El-Moghazy, S. M. Bioorg. Chem. 2017, 75, 127-138.
https://doi.org/10.1016/j.bioorg.2017.09.009

[60]. Sangeetha Margreat, S.; Ramalingam, S.; Sebastian, S.; Xavier, S.; Periandy, S.; Daniel, J. C.; Maria Julie, M. J. Mol. Struct. 2020, 1200 (127099), 127099.
https://doi.org/10.1016/j.molstruc.2019.127099


How to cite


Celik, S.; Yurdakul, S. Eur. J. Chem. 2021, 12(4), 401-411. doi:10.5155/eurjchem.12.4.401-411.2165
Celik, S.; Yurdakul, S. Investigations on spectroscopic characterizations, molecular docking, NBO, drug-Likeness, and ADME properties of 4H-1,2,4-triazol-4-amine by combined computational approach. Eur. J. Chem. 2021, 12(4), 401-411. doi:10.5155/eurjchem.12.4.401-411.2165
Celik, S., & Yurdakul, S. (2021). Investigations on spectroscopic characterizations, molecular docking, NBO, drug-Likeness, and ADME properties of 4H-1,2,4-triazol-4-amine by combined computational approach. European Journal of Chemistry, 12(4), 401-411. doi:10.5155/eurjchem.12.4.401-411.2165
Celik, Sibel, & Senay Yurdakul. "Investigations on spectroscopic characterizations, molecular docking, NBO, drug-Likeness, and ADME properties of 4H-1,2,4-triazol-4-amine by combined computational approach." European Journal of Chemistry [Online], 12.4 (2021): 401-411. Web. 17 Jan. 2022
Celik, Sibel, AND Yurdakul, Senay. "Investigations on spectroscopic characterizations, molecular docking, NBO, drug-Likeness, and ADME properties of 4H-1,2,4-triazol-4-amine by combined computational approach" European Journal of Chemistry [Online], Volume 12 Number 4 (31 December 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.4.401-411.2165

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(4), 401-411 | doi: https://doi.org/10.5155/eurjchem.12.4.401-411.2165 | Get rights and content

Refbacks





Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.