European Journal of Chemistry 2022, 13(1), 126-134 | doi: https://doi.org/10.5155/eurjchem.13.1.126-134.2186 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Mononuclear pyrazine-2-carbohydrazone metal complexes: Synthesis, structural assessment, thermal, biological, and electrical conductivity studies


Ashish Bansod (1) orcid , Ravindra Bhaskar (2) orcid , Chandarshekhar Ladole (3) orcid , Nilesh Salunkhe (4) orcid , Kanchan Thakare (5) orcid , Anand Aswar (6,*) orcid

(1) Department of Chemistry, Sant Gadge Baba Amravati University, Amravati, 444602, India
(2) Department of Chemistry, Sant Gadge Baba Amravati University, Amravati, 444602, India
(3) Department of Chemistry, Sant Gadge Baba Amravati University, Amravati, 444602, India
(4) Department of Chemistry, Sant Gadge Baba Amravati University, Amravati, 444602, India
(5) Department of Chemistry, Sant Gadge Baba Amravati University, Amravati, 444602, India
(6) Department of Chemistry, Sant Gadge Baba Amravati University, Amravati, 444602, India
(*) Corresponding Author

Received: 17 Sep 2021 | Revised: 15 Nov 2021 | Accepted: 12 Feb 2022 | Published: 31 Mar 2022 | Issue Date: March 2022

Abstract


Mononuclear complexes of VO(IV), Cr(III), Fe(III), MoO2(VI), WO2(VI), and UO2(VI) with pyrazinecarbohydrazone ligand (N'-(1-(5-chloro-2-hydroxyphenyl)ethylidene)pyrazine-2-carbohydrazide) were synthesized and the prepared complexes were characterized by elemental analysis, magnetic susceptibility, powder X-ray analysis, various spectroscopic techniques (IR, 1H NMR, 13C NMR, and Mass spectra), SEM, and thermal analysis. VO(IV) complex was additionally characterized by ESR study. The ligand behaves as a dibasic tridentate, coordinating through the phenolate oxygen, azomethine nitrogen, and enolate oxygen atoms towards the central metal ion. The analytical data suggest 1:1 metal to ligand stoichiometry for all complexes. The physicochemical data suggested octahedral geometry to Cr(III), Fe(III), MoO2(VI), WO2(VI), and UO2(VI) complexes while square pyramidal to VO(IV) complex. The SEM analysis indicated the presence of well-defined crystals free from any shadow of the metal ion on their external surface with particle sizes of greater than 10 μm. Various kinetics and thermodynamic parameters are calculated using Coats-Redfern method and on the basis of half decomposition temperature the thermal stability order of complexes was found to be Cr(III) < WO2(VI) < Fe(III) < MoO2(VI) <  VO(IV) < UO2(VI). The solid-state electrical conductivity of compounds was measured in their pellet form in the temperature range form 313-373 K. The conductivity data vary exponentially with the absolute temperature and obey Arrhenius equation indicating their semiconducting behavior. The antibacterial as well as antifungal activities of ligand and its metal complexes were evaluated in vitro against Gram positive bacteria (S. aureus and B. subtilis) and Gram-negative bacteria (E. coli and S. typhi.) and fungal strains (C. albicans and A. niger). The activity data revealed metal complexes are found to be more active than the ligand.


Keywords


TGA; Powder XRD; Metal complexes; Biological activity; Electrical conductivity; Pyrazinecarbohydrazone

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.13.1.126-134.2186

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 141 times | icon graph PDF Article downloaded 31 times


References


[1]. Maurya, M. R. Probing the synthetic protocols and coordination chemistry of oxido-, dioxido-, oxidoperoxido-vanadium and related complexes of higher nuclearity. Coord. Chem. Rev. 2019, 383, 43-81.
https://doi.org/10.1016/j.ccr.2018.12.010

[2]. A-Ali Drea, A.; T. Mohammed, H. Simulation study of adrenaline synthesis from Phenylalanine. J. Adv. Chem. 2015, 12, 3888-3901.
https://doi.org/10.24297/jac.v12i1.843

[3]. Ribeiro, N.; Galvão, A. M.; Gomes, C. S. B.; Ramos, H.; Pinheiro, R.; Saraiva, L.; Ntungwe, E.; Isca, V.; Rijo, P.; Cavaco, I.; Ramilo-Gomes, F.; Guedes, R. C.; Pessoa, J. C.; Correia, I. Naphthoylhydrazones: coordination to metal ions and biological screening. New J. Chem. 2019, 43, 17801-17818.
https://doi.org/10.1039/C9NJ01816F

[4]. Hossain, M. S.; Roy, P. K.; Zakaria, C. M.; Kudrat-E-Zahan, M. Selected Schiff base coordination complexes and their microbial application: A review. Int. J. Chem. Stud. 2018, 6, 19-31.
https://doi.org/10.5958/0974-4150.2017.00002.5

[5]. Viswanathan, A.; Kute, D.; Musa, A.; Konda Mani, S.; Sipilä, V.; Emmert-Streib, F.; Zubkov, F. I.; Gurbanov, A. V.; Yli-Harja, O.; Kandhavelu, M. 2-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)benzonitrile as novel inhibitor of receptor tyrosine kinase and PI3K/AKT/mTOR signaling pathway in glioblastoma. Eur. J. Med. Chem. 2019, 166, 291-303.
https://doi.org/10.1016/j.ejmech.2019.01.021

[6]. Martins, N. M. R.; Anbu, S.; Mahmudov, K. T.; Ravishankaran, R.; Guedes da Silva, M. F. C.; Martins, L. M. D. R. S.; Karande, A. A.; Pombeiro, A. J. L. DNA and BSA binding and cytotoxic properties of copper(ii) and iron(iii) complexes with arylhydrazone of ethyl 2-cyanoacetate or formazan ligands. New J. Chem. 2017, 41, 4076-4086.
https://doi.org/10.1039/C7NJ00420F

[7]. Le Goff, G.; Ouazzani, J. Natural hydrazine-containing compounds: Biosynthesis, isolation, biological activities and synthesis. Bioorg. Med. Chem. 2014, 22, 6529-6544.
https://doi.org/10.1016/j.bmc.2014.10.011

[8]. Yang, Y.; Gao, C.-Y.; Liu, J.; Dong, D. Recent developments in rhodamine salicylidene hydrazone chemosensors. Anal. Methods 2016, 8, 2863-2871.
https://doi.org/10.1039/C6AY00135A

[9]. Mohanraj, M.; Ayyannan, G.; Raja, G.; Jayabalakrishnan, C. Evaluation of DNA binding, DNA cleavage, protein binding, radical scavenging and in vitro cytotoxic activities of ruthenium(II) complexes containing 2,4-dihydroxy benzylidene ligands. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 1297-1306.
https://doi.org/10.1016/j.msec.2016.08.043

[10]. Sebastian, O.; Thapa, A. Schiff base metal complexes of Ni, Pd and Cu. J. Chem. Pharm. Res. 2015, 7 (10), 953-963. https://www.jocpr.com/ articles/schiff-base-metal-complexes-of-ni-pd-and-cu.pdf (accessed February 10, 2022).

[11]. Abd El-Halim, H. F.; Mohamed, G. G.; Khalil, E. A. M. Synthesis, spectral, thermal and biological studies of mixed ligand complexes with newly prepared Schiff base and 1,10-phenanthroline ligands. J. Mol. Struct. 2017, 1146, 153-163.
https://doi.org/10.1016/j.molstruc.2017.05.092

[12]. Bhaskar, R. S.; Salunkhe, N. G.; Yaul, A. R.; Aswar, A. S. Synthesis, characterization, thermal behavior and biological studies of VOIV and MoO2 VI complexes of hydrazone ligand. J. Indian Chem. Soc. 2016, 93, 489-494.

[13]. Bhaskar, R.; Salunkhe, N.; Yaul, A.; Aswar, A. Bivalent transition metal complexes of ONO donor hydrazone ligand: Synthesis, structural characterization and antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 151, 621-627.
https://doi.org/10.1016/j.saa.2015.06.121

[14]. Synthesis, characterization and biological studies of some transition metal complexes with pyrazine Schiff base hydra zone ligand. Jordan J. Chem. 2020, 15, 61-72.
https://doi.org/10.47014/15.2.2

[15]. Chen, G. J. J.; McDonald, J. W.; Newton, W. E. Synthesis of molybdenum (IV) and molybdenum(V) complexes using oxo abstraction by phosphines. Mechanistic implications. Inorg. Chem. 1976, 15, 2612-2615.
https://doi.org/10.1021/ic50165a008

[16]. Yu, S. B.; Holm, R. H. Aspects of the oxygen atom transfer chemistry of tungsten. Inorg. Chem. 1989, 28, 4385-4391.
https://doi.org/10.1021/ic00323a021

[17]. Vogel, A. I.; Jeffrey, G. H.; Bassett, J.; Mendam, J.; Denney, R. C. Vogel's Textbook of Quantitative Chemical Analysis; 5th ed.; Longman Higher Education: Harlow, England, 1999.

[18]. Gross, D. C.; DeVay, J. E. Production and purification of syringomycin, a phytotoxin produced by Pseudomonas syringae. Physiol. Plant Pathol. 1977, 11, 13-28.
https://doi.org/10.1016/0048-4059(77)90083-2

[19]. Jain, P.; Kumar, D.; Chandra, S.; Misra, N. Experimental and theoretical studies of Mn(II) and Co(II) metal complexes of a tridentate Schiff's base ligand and their biological activities. Appl. Organomet. Chem. 2020, 34, e5371.
https://doi.org/10.1002/aoc.5371

[20]. Maurya, M. R.; Dhaka, S.; Avecilla, F. Synthesis, characterization, reactivity and catalytic activity of dioxidomolybdenum(VI) complexes derived from tribasic ONS donor ligands. Polyhedron 2014, 81, 154-167.
https://doi.org/10.1016/j.poly.2014.05.068

[21]. Nishat, N.; Hasnain, S.; Dhyani, S.; Asma Coordination polymers of glutaraldehyde with glycine metal complexes: synthesis, spectral characterization, and their biological evaluation. J. Coord. Chem. 2010, 63, 3859-3870.
https://doi.org/10.1080/00958972.2010.521553

[22]. Synthesis and characterization of homobinuclear complexes of UO_2(VI), Th(IV), ZrO(IV) and VO(IV) with Schiff-base monohyd-razone derivatives. J. Korean Chem. Soc. 2008, 52, 468-475.
https://doi.org/10.5012/jkcs.2008.52.5.468

[23]. Maurya, M. R.; Sarkar, B.; Avecilla, F.; Correia, I. Vanadium complexes derived from acetyl pyrazolone and hydrazides: Structure, reactivity, peroxidase mimicry and efficient catalytic activity for the oxidation of 1‐phenylethanol. Eur. J. Inorg. Chem. 2016, 2016, 4028-4044.
https://doi.org/10.1002/ejic.201600427

[24]. Zou, Y.; Liu, W.-L.; Xie, J.-L.; Ni, C.-L.; Ni, Z.-P.; Li, Y.-Z.; Meng, Q.-J.; Yao, Y.-G. Synthesis and crystal structure of metal complexes of Schiff bases derived from Glycylglycine and Salicylaldehyde [Ni(H2O)6(Ml)2] ·nH2O (M = Cu, Ni; L = C11H9N2O4). J. Coord. Chem. 2004, 57, 381-391.
https://doi.org/10.1080/00958970410001689067

[25]. Sharma, R. P.; Sharma, R.; Bala, R.; Quiros, M.; Salas, J. M. Synthesis, spectroscopic and X-ray structural study of cis-diazidobis- (ethylenediamine)cobalt(III) thiocyanate. J. Coord. Chem. 2003, 56, 1581-1586.
https://doi.org/10.1080/00958970310001641673

[26]. Ibrahim, K. M.; Gabr, I. M.; Zaky, R. R. Synthesis and magnetic, spectral and thermal eukaryotic DNA studies of some 2-acetylpyridine- [N-(3-hydroxy-2-naphthoyl)] hydrazone complexes. J. Coord. Chem. 2009, 62, 1100-1111.
https://doi.org/10.1080/00958970802464616

[27]. McGlynn, S. P.; Smith, J. K. The electronic structure, spectra, and magnetic properties of actinyl ions. J. Mol. Spectrosc. 1961, 6, 164-187.
https://doi.org/10.1016/0022-2852(61)90237-5

[28]. Jones, L. H. Determination of U-O bond distance in uranyl complexes from their infrared spectra. Spectrochim. acta 1959, 15, 409-411.
https://doi.org/10.1016/S0371-1951(59)80333-7

[29]. Maurya, M. R.; Kumar, M.; Kumar, A.; Costa Pessoa, J. Oxidation of p-chlorotoluene and cyclohexene catalysed by polymer-anchored oxovanadium(iv) and copper(ii) complexes of amino acid derived tridentate ligands. Dalton Trans. 2008, 4220-4232.
https://doi.org/10.1039/b804823a

[30]. Maurya, R. C.; Singh, H.; Pandey, A.; Singh, T. Metal chelates of bioinorganic and catalytic relevance: Synthesis, magnetic and spectral studies of some mononuclear and binuclear oxovanadium(IV) and dioxotungsten(VI) complexes involving Schiff bases derived from 4-butyryl-3- methyl-1-phenyl-2-pyrazolin-5-one and certain aromatic amines. Indian J. Chem. A 2001, 40, 1053-1063.

[31]. Mohanan, K.; Aswathy, R.; Nitha, L. P.; Mathews, N. E.; Kumari, B. S. Synthesis, spectroscopic characterization, DNA cleavage and antibacterial studies of a novel tridentate Schiff base and some lanthanide(III) complexes. J. Rare Earths 2014, 32, 379-388.
https://doi.org/10.1016/S1002-0721(14)60081-8

[32]. Mondal, B.; Ghosh, T.; Sutradhar, M.; Mukherjee, G.; Drew, M. G. B.; Ghosh, T. Synthesis, structure and solution chemistry of a family of dinuclear hydrazonato-vanadium(V) complexes with [OV(μ-O)VO]4+ core. Polyhedron 2008, 27, 2193-2201.
https://doi.org/10.1016/j.poly.2008.03.018

[33]. Anantha Lakshmi, P. V.; Saritha Reddy, P.; Jayatyaga Raju, V. Synthesis and structural studies of first row transition metal complexes of N-(2-nitro)-benzilidine-3-hydrazino quinoxaline-2-one. Bull. Chem. Soc. Ethiop. 2008, 22 (3), 385-390.
https://doi.org/10.4314/bcse.v22i3.61215

[34]. Özdemir, Ü. Ö.; Akkaya, N.; Özbek, N. New nickel(II), palladium(II), platinum(II) complexes with aromatic methanesulfonylhydrazone based ligands. Synthesis, spectroscopic characterization and in vitro antibacterial evaluation. Inorganica Chim. Acta 2013, 400, 13-19.
https://doi.org/10.1016/j.ica.2013.01.031

[35]. Chitrapriya, N.; Mahalingam, V.; Zeller, M.; Natarajan, K. Synthesis, characterization, crystal structures and DNA binding studies of nickel(II) hydrazone complexes. Inorganica Chim. Acta 2010, 363, 3685-3693.
https://doi.org/10.1016/j.ica.2010.05.017

[36]. Zaky, R. R.; Yousef, T. A. Spectral, magnetic, thermal, molecular modelling, ESR studies and antimicrobial activity of (E)-3-(2-(2-hydroxybenzylidene) hydrazinyl)-3-oxo-n(thiazole-2-yl)propan amide complexes. J. Mol. Struct. 2011, 1002, 76-85.
https://doi.org/10.1016/j.molstruc.2011.06.050

[37]. Anacona, J. R.; Rincones, M. Tridentate hydrazone metal complexes derived from cephalexin and 2-hydrazinopyridine: Synthesis, characterization and antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 141, 169-175.
https://doi.org/10.1016/j.saa.2015.01.009

[38]. Revanasiddappa, M.; Suresh, T.; Khasim, S.; Raghavendray, S. C.; Basavaraja, C.; Angadi, S. D. Transition Metal Complexes of 1, 4(2'-Hydroxyphenyl-1-yl) di-imino azine: Synthesis, Characterization and Antimicrobial Studies. E-J. Chem. 2008, 5, 395-403.
https://doi.org/10.1155/2008/328961

[39]. EL-Tabl, A. S.; EL-Saied, F. A.; AL-Hakimi, A. N. Synthesis, spectroscopic investigation and biological activity of metal complexes with ONO trifunctionalalized hydrazone ligand. Transit. Met. Chem. 2007, 32, 689-701.
https://doi.org/10.1007/s11243-007-0228-0

[40]. Thaker, B. T.; Surati, K. R.; Oswal, S.; Jadeja, R. N.; Gupta, V. K. Synthesis, spectral, thermal and crystallographic investigations on oxo vanadium(IV) and manganese(III) complexes derived from heterocyclic β-diketone and 2-amino ethanol. Struct. Chem. 2007, 18, 295-310.
https://doi.org/10.1007/s11224-006-9134-x

[41]. Chiang Mai Journal of Science; Faculty of Science; Chiang Mai University Chiang Mai Journal of Science 2008, 35 (3), 483-494. https://epg.science.cmu.ac.th/ejournal/journal-detail.php?id=275 (accessed February 10, 2022).

[42]. Saleem, M.; Sharma, M.; Sheikh, H. N.; Kalsotra, B. L. Synthesis and characterization of dinuclear molybdenum(VI) peroxo complexes with aroyl hydrazones. Ind. J. Chem. A 2007, 43, 1423-1426.

[43]. Kivelson, D.; Neiman, R. ESR studies on the bonding in copper complexes. J. Chem. Phys. 1961, 35, 149-155.
https://doi.org/10.1063/1.1731880

[44]. Abdel-Rahman, L. H.; Abu-Dief, A. M.; El-Khatib, R. M.; Abdel-Fatah, S. M. Some new nano-sized Fe(II), Cd(II) and Zn(II) Schiff base complexes as precursor for metal oxides: Sonochemical synthesis, characterization, DNA interaction, in vitro antimicrobial and anticancer activities. Bioorg. Chem. 2016, 69, 140-152.
https://doi.org/10.1016/j.bioorg.2016.10.009

[45]. Hanson, G. R.; Kabanos, T. A.; Keramidas, A. D.; Mentzafos, D.; Terzis, A. Oxovanadium(IV)-amide binding. Synthetic, structural, and physical studies of N-[2-(4-oxopent-2-en-2-ylamino)phenyl]pyridine-2-carboxamidooxovanadium(IV) and N-[2-(4-phenyl-4-oxobut-2-en-2-ylamino)phenyl]pyridine-2-carboxamidooxovanadium(IV). Inorg. Chem. 1992, 31, 2587-2594.
https://doi.org/10.1021/ic00038a051

[46]. Warren, B. E. X-Ray Diffraction; Dover Publications: Mineola, NY, 1990.

[47]. Dianu, M. L.; Kriza, A.; Musuc, A. M. Synthesis, spectral characteri-zation, and thermal behavior of mononuclear Cu(II), Co(II), Ni(II), Mn(II), and Zn(II) complexes with 5-bromosalycilaldehyde isonico-tinoylhydrazone. J. Therm. Anal. Calorim. 2013, 112, 585-593.
https://doi.org/10.1007/s10973-012-2578-x

[48]. Coats, A. W.; Redfern, J. P. Kinetic parameters from thermogravimetric data. Nature 1964, 201, 68-69.
https://doi.org/10.1038/201068a0

[49]. Frost, A.; Pearson, R. Kinetics and mechanism, second edition. J. Phys. Chem. 1961, 65, 384-384.
https://doi.org/10.1021/j100820a601

[50]. Narang, K. K.; Singh, K. B.; Singh, M. K.; Goyle, M. R.; Bhuvaneshwari, K.; Singh, V. Synthesis, characterization, dehydration, solid state conductance and biological activity of chromium(III) benzoyl hydrazin E azide/ sulphate complexes. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 1993, 23, 1313-1333.
https://doi.org/10.1080/15533179308016689

[51]. Wahed, M. G.; Bayoumi, H. A.; Mohamme, M. I. Physical properties of some acetylbenzaldehydehydrazone metal complexes. Bull. Korean Chem. Soc. 2003, 24, 1313-1318.
https://doi.org/10.5012/bkcs.2003.24.9.1313

[52]. Chohan, Z. H.; Pervez, H.; Rauf, A.; Khan, K. M.; Supuran, C. T. Isatin-derived antibacterial and antifungal compounds and their transition metal complexes. J. Enzyme Inhib. Med. Chem. 2004, 19, 417-423.
https://doi.org/10.1080/14756360410001710383

[53]. Aljahdali, M. S.; El-Sherif, A. A.; Hilal, R. H.; Abdel-Karim, A. T. Mixed bivalent transition metal complexes of 1,10-phenanthroline and 2-aminomethylthiophenyl-4-bromosalicylaldehyde Schiff base: Spectroscopic, molecular modeling and biological activities. Eur. J. Chem. 2013, 4, 370-378.
https://doi.org/10.5155/eurjchem.4.4.370-378.803

[54]. Tyagi, P.; Chandra, S.; Saraswat, B. S. Ni(II) and Zn(II) complexes of 2-((thiophen-2-ylmethylene)amino)benzamide: Synthesis, spectros-copic characterization, thermal, DFT and anticancer activities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 134, 200-209.
https://doi.org/10.1016/j.saa.2014.06.112

[55]. Phaniband, M. A.; Dhumwad, S. D. Synthesis, characterization and biological studies of CoII, NiII, CuII and ZnII complexes of Schiff bases derived from 4-substituted carbostyrils[quinolin2(1H)-ones]. Transit. Met. Chem. 2007, 32, 1117-1125.
https://doi.org/10.1007/s11243-007-0295-2


How to cite


Bansod, A.; Bhaskar, R.; Ladole, C.; Salunkhe, N.; Thakare, K.; Aswar, A. Eur. J. Chem. 2022, 13(1), 126-134. doi:10.5155/eurjchem.13.1.126-134.2186
Bansod, A.; Bhaskar, R.; Ladole, C.; Salunkhe, N.; Thakare, K.; Aswar, A. Mononuclear pyrazine-2-carbohydrazone metal complexes: Synthesis, structural assessment, thermal, biological, and electrical conductivity studies. Eur. J. Chem. 2022, 13(1), 126-134. doi:10.5155/eurjchem.13.1.126-134.2186
Bansod, A., Bhaskar, R., Ladole, C., Salunkhe, N., Thakare, K., & Aswar, A. (2022). Mononuclear pyrazine-2-carbohydrazone metal complexes: Synthesis, structural assessment, thermal, biological, and electrical conductivity studies. European Journal of Chemistry, 13(1), 126-134. doi:10.5155/eurjchem.13.1.126-134.2186
Bansod, Ashish, Ravindra Bhaskar, Chandarshekhar Ladole, Nilesh Salunkhe, Kanchan Thakare, & Anand Aswar. "Mononuclear pyrazine-2-carbohydrazone metal complexes: Synthesis, structural assessment, thermal, biological, and electrical conductivity studies." European Journal of Chemistry [Online], 13.1 (2022): 126-134. Web. 18 May. 2022
Bansod, Ashish, Bhaskar, Ravindra, Ladole, Chandarshekhar, Salunkhe, Nilesh, Thakare, Kanchan, AND Aswar, Anand. "Mononuclear pyrazine-2-carbohydrazone metal complexes: Synthesis, structural assessment, thermal, biological, and electrical conductivity studies" European Journal of Chemistry [Online], Volume 13 Number 1 (31 March 2022)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.13.1.126-134.2186

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2022, 13(1), 126-134 | doi: https://doi.org/10.5155/eurjchem.13.1.126-134.2186 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.