European Journal of Chemistry 2022, 13(1), 78-90 | doi: https://doi.org/10.5155/eurjchem.13.1.78-90.2189 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Kinetic studies and adsorptive removal of chromium Cr(VI) from contaminated water using green adsorbent prepared from agricultural waste, rice straw


Izaz Ul Islam (1) orcid , Mushtaq Ahmad (2) orcid , Maqbool Ahmad (3) orcid , Shah Rukh (4) orcid , Ihsan Ullah (5,*) orcid

(1) Department of Chemistry, Government Post Graduate College Mardan, Higher Education Department, Khyber Pakhtunkhwa, 23200, Pakistan
(2) Department of Chemistry, Government Post Graduate College Mardan, Higher Education Department, Khyber Pakhtunkhwa, 23200, Pakistan
(3) Department of Chemistry, Government Post Graduate College Mardan, Higher Education Department, Khyber Pakhtunkhwa, 23200, Pakistan
(4) Department of Chemistry, Government Girls Degree College Takht Bhai Mardan, Higher Education Department, Khyber Pakhtunkhwa, 23200, Pakistan
(5) Department of Chemistry, Government Post Graduate College Mardan, Higher Education Department, Khyber Pakhtunkhwa, 23200, Pakistan
(*) Corresponding Author

Received: 29 Sep 2021 | Revised: 11 Nov 2021 | Accepted: 27 Nov 2021 | Published: 31 Mar 2022 | Issue Date: March 2022

Abstract


Water pollution caused by heavy metals is of great concern because of rapid industrialization, lack of wastewater treatment, and inefficient removal of these metals from wastewater. The present project was designed to develop a green adsorbent from rice straw and to investigate it for the removal of chromium from chromium-contaminated water. Rice straw biochar was prepared and then modified with FeCl3·6H2O and FeSO4·7H2O to enhance its Cr removal efficiency. Modified and unmodified biochar were characterized by Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Fourier Transform Infrared Spectroscopy (FTIR). Batch sorption experimentations were performed to inquire about adsorption kinetics, isotherms, and Cr(VI) adsorption mechanism onto iron-modified rice straw biochar (FMRSB). The results specified that the apex adsorption capability of the adsorbent for chromium was 59 mg/g and the maximum removal efficacy was 90.9%. Three isotherm models, Sips, Freundlich, and Langmuir models were applied to the experimental data. Among them, the Sips isotherm model reveals the most excellent fitting with a maximum correlation coefficient (R2 = 0.996) that was adjusted to the experimental data. Regarding kinetic studies, the Pseudo second-order (PSO) exhibits the best fitting with a higher correlation coefficient (R2 = 0.996). The kinetic equilibrium data expressed that the adsorption of Cr(VI) on the FMRSB surface was chemisorption. The mechanism of adsorption of Cr(VI) on FMRSB was predominantly regulated by anionic adsorption through adsorption coupled reduction and electrostatic attraction. The present study demonstrated that the use of modified biochar prepared from agricultural wastes is an environmentally safe and cost-effective technique for the removal of toxic metals from polluted water.


Keywords


Pyrolysis; Rice straw; Chromium; Adsorption; Raw rice straw biochar; Iron modified rice straw biochar

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.13.1.78-90.2189

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 440 times | icon graph PDF Article downloaded 52 times


References


[1]. Rodrigues, E.; Almeida, O.; Brasil, H.; Moraes, D.; dos Reis, M. A. L. Adsorption of Chromium (VI) on Hydrotalcite-Hydroxyapatite Material Doped with Carbon Nanotubes: Equilibrium, Kinetic and Thermodynamic Study. Appl. Clay Sci. 2019, 172, 57-64.
https://doi.org/10.1016/j.clay.2019.02.018

[2]. Zewail, T. M.; Yousef, N. S. Chromium Ions (Cr6+ & Cr3+) Removal from Synthetic Wastewater by Electrocoagulation Using Vertical Expanded Fe Anode. J. Electroanal. Chem. (Lausanne Switz) 2014, 735, 123-128.
https://doi.org/10.1016/j.jelechem.2014.09.002

[3]. Shobier, A. H.; El-Sadaawy, M. M.; El-Said, G. F. Removal of Hexavalent Chromium by Ecofriendly Raw Marine Green Alga Ulva Fasciata: Kinetic, Thermodynamic and Isotherm Studies. Egypt. J. Aquat. Res. 2020, 46 (4), 325-331.
https://doi.org/10.1016/j.ejar.2020.09.003

[4]. Tang, X.; Huang, Y.; Li, Y.; Wang, L.; Pei, X.; Zhou, D.; He, P.; Hughes, S. S. Study on Detoxification and Removal Mechanisms of Hexavalent Chromium by Microorganisms. Ecotoxicol. Environ. Saf. 2021, 208 (111699), 111699.
https://doi.org/10.1016/j.ecoenv.2020.111699

[5]. Rahimi, M.; Pourmortazavi, S. M.; Zandavar, H.; Mirsadeghi, S. Recyclable Methodology over Bimetallic Zero-Valent Mg:Zn Composition for Hexavalent Chromium Remediation via Batch and Flow Systems in Industrial Wastewater: An Experimental Design. J. Mater. Res. Technol. 2021, 11, 1-18.
https://doi.org/10.1016/j.jmrt.2020.12.090

[6]. Ambi, A. A.; Isa, M. T.; Ibrahim, A. B.; Bashir, M.; Ekwuribe, S.; Sallau, A. B. Hexavalent Chromium Bioremediation Using Hibiscus Sabdariffa Calyces Extract: Process Parameters, Kinetics and Thermodynamics. Scientific African 2020, 10 (e00642), e00642.
https://doi.org/10.1016/j.sciaf.2020.e00642

[7]. Alemu, A.; Lemma, B.; Gabbiye, N.; Alula, M. T.; Desta, M. T. Removal of Chromium (VI) from Aqueous Solution Using Vesicular Basalt: A Potential Low Cost Wastewater Treatment System. Heliyon 2018, 4 (7), e00682.
https://doi.org/10.1016/j.heliyon.2018.e00682

[8]. Dim, P. E.; Mustapha, L. S.; Termtanun, M.; Okafor, J. O. Adsorption of Chromium (VI) and Iron (III) Ions onto Acid-Modified Kaolinite: Isotherm, Kinetics and Thermodynamics Studies. Arab. J. Chem. 2021, 14 (4), 103064.
https://doi.org/10.1016/j.arabjc.2021.103064

[9]. Fan, J.; Onal Okyay, T.; Frigi Rodrigues, D. The Synergism of Temperature, PH and Growth Phases on Heavy Metal Biosorption by Two Environmental Isolates. J. Hazard. Mater. 2014, 279, 236-243.
https://doi.org/10.1016/j.jhazmat.2014.07.016

[10]. Ali, A.; Saeed, K.; Mabood, F. Removal of Chromium (VI) from Aqueous Medium Using Chemically Modified Banana Peels as Efficient Low-Cost Adsorbent. Alex. Eng. J. 2016, 55 (3), 2933-2942.
https://doi.org/10.1016/j.aej.2016.05.011

[11]. Wang, Q.; Zhou, C.; Kuang, Y.-J.; Jiang, Z.-H.; Yang, M. Removal of Hexavalent Chromium in Aquatic Solutions by Pomelo Peel. Water Sci. Eng. 2020, 13 (1), 65-73.
https://doi.org/10.1016/j.wse.2019.12.011

[12]. Piccin, J. S.; Cadaval, T. R. S., Jr; de Pinto, L. A. A.; Dotto, G. L. Adsorption Isotherms in Liquid Phase: Experimental, Modeling, and Interpretations. In Adsorption Processes for Water Treatment and Purification; Springer International Publishing: Cham, 2017; pp 19-51.
https://doi.org/10.1007/978-3-319-58136-1_2

[13]. Khalil, U.; Shakoor, M. B.; Ali, S.; Ahmad, S. R.; Rizwan, M.; Alsahli, A. A.; Alyemeni, M. N. Selective Removal of Hexavalent Chromium from Wastewater by Rice Husk: Kinetic, Isotherm and Spectroscopic Investigation. Water (Basel) 2021, 13 (3), 263.
https://doi.org/10.3390/w13030263

[14]. Li, A.; Deng, H.; Jiang, Y.; Ye, C. High-Efficiency Removal of Cr(VI) from Wastewater by Mg-Loaded Biochars: Adsorption Process and Removal Mechanism. Materials (Basel) 2020, 13 (4), 947.
https://doi.org/10.3390/ma13040947

[15]. Al-Ghouti, M. A.; Da'ana, D.; Abu-Dieyeh, M.; Khraisheh, M. Adsorptive Removal of Mercury from Water by Adsorbents Derived from Date Pits. Sci. Rep. 2019, 9 (1), 15327.
https://doi.org/10.1038/s41598-019-51594-y

[16]. Hoang, L. P.; Van, H. T.; Nguyen, L. H.; Mac, D.-H.; Vu, T. T.; Ha, L. T.; Nguyen, X. C. Removal of Cr(vi) from Aqueous Solution Using Magnetic Modified Biochar Derived from Raw Corncob. New J Chem 2019, 43 (47), 18663-18672.
https://doi.org/10.1039/C9NJ02661D

[17]. Lyu, H.; Tang, J.; Huang, Y.; Gai, L.; Zeng, E. Y.; Liber, K.; Gong, Y. Removal of Hexavalent Chromium from Aqueous Solutions by a Novel Biochar Supported Nanoscale Iron Sulfide Composite. Chem. Eng. J. 2017, 322, 516-524.
https://doi.org/10.1016/j.cej.2017.04.058

[18]. Zhang, M.; Gao, B.; Varnoosfaderani, S.; Hebard, A.; Yao, Y.; Inyang, M. Preparation and Characterization of a Novel Magnetic Biochar for Arsenic Removal. Bioresour. Technol. 2013, 130, 457-462.
https://doi.org/10.1016/j.biortech.2012.11.132

[19]. Hu, X.; Ding, Z.; Zimmerman, A. R.; Wang, S.; Gao, B. Batch and Column Sorption of Arsenic onto Iron-Impregnated Biochar Synthesized through Hydrolysis. Water Res. 2015, 68, 206-216.
https://doi.org/10.1016/j.watres.2014.10.009

[20]. Zhang, X.; Lv, L.; Qin, Y.; Xu, M.; Jia, X.; Chen, Z. Removal of Aqueous Cr(VI) by a Magnetic Biochar Derived from Melia Azedarach Wood. Bioresour. Technol. 2018, 256, 1-10.
https://doi.org/10.1016/j.biortech.2018.01.145

[21]. Zhu, Y.; Li, H.; Zhang, G.; Meng, F.; Li, L.; Wu, S. Removal of Hexavalent Chromium from Aqueous Solution by Different Surface-Modified Biochars: Acid Washing, Nanoscale Zero-Valent Iron and Ferric Iron Loading. Bioresour. Technol. 2018, 261, 142-150.
https://doi.org/10.1016/j.biortech.2018.04.004

[22]. Nguyen, T. H.; Pham, T. H.; Nguyen Thi, H. T.; Nguyen, T. N.; Nguyen, M.-V.; Tran Dinh, T.; Nguyen, M. P.; Do, T. Q.; Phuong, T.; Hoang, T. T.; Mai Hung, T. T.; Thi, V. H. T. Synthesis of Iron-Modified Biochar Derived from Rice Straw and Its Application to Arsenic Removal. J. Chem. 2019, 2019, 1-8, 5295610.
https://doi.org/10.1155/2019/5295610

[23]. He, R.; Peng, Z.; Lyu, H.; Huang, H.; Nan, Q.; Tang, J. Synthesis and Characterization of an Iron-Impregnated Biochar for Aqueous Arsenic Removal. Sci. Total Environ. 2018, 612, 1177-1186.
https://doi.org/10.1016/j.scitotenv.2017.09.016

[24]. Goodman, B. A. Utilization of Waste Straw and Husks from Rice Production: A Review. Journal of Bioresources and Bioproducts 2020, 5 (3), 143-162.
https://doi.org/10.1016/j.jobab.2020.07.001

[25]. Chandra, S.; Bhattacharya, J. Influence of Temperature and Duration of Pyrolysis on the Property Heterogeneity of Rice Straw Biochar and Optimization of Pyrolysis Conditions for Its Application in Soils. J. Clean. Prod. 2019, 215, 1123-1139.
https://doi.org/10.1016/j.jclepro.2019.01.079

[26]. Bulut, E.; Özacar, M.; Şengil, İ. A. Adsorption of Malachite Green onto Bentonite: Equilibrium and Kinetic Studies and Process Design. Microporous Mesoporous Mater. 2008, 115 (3), 234-246.
https://doi.org/10.1016/j.micromeso.2008.01.039

[27]. Bardalai, M.; Mahanta, D. K. Characterisation of Biochar Produced by Pyrolysis from Areca Catechu Dust. Mater. Today 2018, 5 (1), 2089-2097.
https://doi.org/10.1016/j.matpr.2017.09.205

[28]. Shi, T.; Wang, Z.; Liu, Y.; Jia, S.; Changming, D. Removal of Hexavalent Chromium from Aqueous Solutions by D301, D314 and D354 Anion-Exchange Resins. J. Hazard. Mater. 2009, 161 (2-3), 900-906.
https://doi.org/10.1016/j.jhazmat.2008.04.041

[29]. Kan, C.-C.; Ibe, A. H.; Rivera, K. K. P.; Arazo, R. O.; de Luna, M. D. G. Hexavalent Chromium Removal from Aqueous Solution by Adsorbents Synthesized from Groundwater Treatment Residuals. Sustain. Environ. Res. 2017, 27 (4), 163-171.
https://doi.org/10.1016/j.serj.2017.04.001

[30]. Yahya, M. D.; Obayomi, K. S.; Abdulkadir, M. B.; Iyaka, Y. A.; Olugbenga, A. G. Characterization of Cobalt Ferrite-Supported Activated Carbon for Removal of Chromium and Lead Ions from Tannery Wastewater via Adsorption Equilibrium. Water Sci. Eng. 2020, 13 (3), 202-213.
https://doi.org/10.1016/j.wse.2020.09.007

[31]. Ahmed, M. B.; Zhou, J. L.; Ngo, H. H.; Guo, W.; Chen, M. Progress in the Preparation and Application of Modified Biochar for Improved Contaminant Removal from Water and Wastewater. Bioresour. Technol. 2016, 214, 836-851.
https://doi.org/10.1016/j.biortech.2016.05.057

[32]. Khalil, U.; Shakoor, M. B.; Ali, S.; Rizwan, M. Tea Waste as a Potential Biowaste for Removal of Hexavalent Chromium from Wastewater: Equilibrium and Kinetic Studies. Arab. J. Geosci. 2018, 11 (19), 573.
https://doi.org/10.1007/s12517-018-3932-5

[33]. Shakoor, M. B.; Nawaz, R.; Hussain, F.; Raza, M.; Ali, S.; Rizwan, M.; Oh, S.-E.; Ahmad, S. Human Health Implications, Risk Assessment and Remediation of As-Contaminated Water: A Critical Review. Sci. Total Environ. 2017, 601-602, 756-769.
https://doi.org/10.1016/j.scitotenv.2017.05.223

[34]. Yin, W.; Guo, Z.; Zhao, C.; Xu, J. Removal of Cr(VI) from Aqueous Media by Biochar Derived from Mixture Biomass Precursors of Acorus Calamus Linn. and Feather Waste. J. Anal. Appl. Pyrolysis 2019, 140, 86-92.
https://doi.org/10.1016/j.jaap.2019.04.024

[35]. Chen, Y.; Wang, B.; Xin, J.; Sun, P.; Wu, D. Adsorption Behavior and Mechanism of Cr(VI) by Modified Biochar Derived from Enteromorpha Prolifera. Ecotoxicol. Environ. Saf. 2018, 164, 440-447.
https://doi.org/10.1016/j.ecoenv.2018.08.024

[36]. Yang, L.; Yang, M.; Xu, P.; Zhao, X.; Bai, H.; Li, H. Characteristics of Nitrate Removal from Aqueous Solution by Modified Steel Slag. Water (Basel) 2017, 9 (10), 757.
https://doi.org/10.3390/w9100757

[37]. Dong, H.; Deng, J.; Xie, Y.; Zhang, C.; Jiang, Z.; Cheng, Y.; Hou, K.; Zeng, G. Stabilization of Nanoscale Zero-Valent Iron (NZVI) with Modified Biochar for Cr(VI) Removal from Aqueous Solution. J. Hazard. Mater. 2017, 332, 79-86.
https://doi.org/10.1016/j.jhazmat.2017.03.002

[38]. Wang, H.; Zhang, M.; Lv, Q. Removal Efficiency and Mechanism of Cr(VI) from Aqueous Solution by Maize Straw Biochars Derived at Different Pyrolysis Temperatures. Water 2019, 11, 781.
https://doi.org/10.3390/w11040781

[39]. Al-Massaedh, "ayat Allah"; Gharaibeh, A.; Radaydeh, S.; Al-Momani, I. Assessment of Toxic and Essential Heavy Metals in Imported Dried Fruits Sold in the Local Markets of Jordan. Eur. J. Chem. 2018, 9 (4), 394-399.
https://doi.org/10.5155/eurjchem.9.4.394-399.1800

[40]. Yi, Y.; Tu, G.; Zhao, D.; Tsang, P. E.; Fang, Z. Biomass Waste Components Significantly Influence the Removal of Cr(VI) Using Magnetic Biochar Derived from Four Types of Feedstocks and Steel Pickling Waste Liquor. Chem. Eng. J. 2019, 360, 212-220.
https://doi.org/10.1016/j.cej.2018.11.205

[41]. Thatoi, H.; Das, S.; Mishra, J.; Rath, B. P.; Das, N. Bacterial Chromate Reductase, a Potential Enzyme for Bioremediation of Hexavalent Chromium: A Review. J. Environ. Manage. 2014, 146, 383-399.
https://doi.org/10.1016/j.jenvman.2014.07.014

[42]. Panda, H.; Tiadi, N.; Mohanty, M.; Mohanty, C. R. Studies on Adsorption Behavior of an Industrial Waste for Removal of Chromium from Aqueous Solution. S. Afr. J. Chem. Eng. 2017, 23, 132-138.
https://doi.org/10.1016/j.sajce.2017.05.002

[43]. Dula, T.; Siraj, K.; Kitte, S. A. Adsorption of Hexavalent Chromium from Aqueous Solution Using Chemically Activated Carbon Prepared from Locally Available Waste of Bamboo (Oxytenanthera Abyssinica). ISRN Environ. Chem. 2014, 2014, 1-9, 438245.
https://doi.org/10.1155/2014/438245

[44]. Mohan, D.; Rajput, S.; Singh, V. K.; Steele, P. H.; Pittman, C. U., Jr. Modeling and Evaluation of Chromium Remediation from Water Using Low Cost Bio-Char, a Green Adsorbent. J. Hazard. Mater. 2011, 188 (1-3), 319-333.
https://doi.org/10.1016/j.jhazmat.2011.01.127

[45]. Saha, B.; Orvig, C. Biosorbents for Hexavalent Chromium Elimination from Industrial and Municipal Effluents. Coord. Chem. Rev. 2010, 254 (23-24), 2959-2972.
https://doi.org/10.1016/j.ccr.2010.06.005

[46]. Alam, J.; Uddin, M. N. Kinetic and Equilibrium Studies of Adsorption of Pb(II) on Low Cost Agri-Waste Adsorbent Jute Stick Powder. Eur. J. Chem. 2019, 10 (4), 295-304.
https://doi.org/10.5155/eurjchem.10.4.295-304.1886

[47]. Edet, U. A.; Ifelebuegu, A. O. Kinetics, Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste. Processes (Basel) 2020, 8 (6), 665.
https://doi.org/10.3390/pr8060665

[48]. Bullen, J.; Saleesongsom, S.; Weiss, D. A Revised Pseudo-Second Order Kinetic Model for Adsorption, Sensitive to Changes in Sorbate and Sorbent Concentrations. ChemRxiv, 2020. https://doi.org/10.26434/ chemrxiv.12008799.v1.
https://doi.org/10.26434/chemrxiv.12008799

[49]. Netzahuatl-Muñoz, A. R.; Cristiani-Urbina, M. del C.; Cristiani-Urbina, E. Chromium Biosorption from Cr(VI) Aqueous Solutions by Cupressus Lusitanica Bark: Kinetics, Equilibrium and Thermodynamic Studies. PLoS One 2015, 10 (9), e0137086.
https://doi.org/10.1371/journal.pone.0137086

[50]. Robati, D. Pseudo-Second-Order Kinetic Equations for Modeling Adsorption Systems for Removal of Lead Ions Using Multi-Walled Carbon Nanotube. J. Nanostructure Chem. 2013, 3 (1), 55.
https://doi.org/10.1186/2193-8865-3-55

[51]. Rana, A.; Kumari, N.; Tyagi, M.; Jagadevan, S. Leaf-Extract Mediated Zero-Valent Iron for Oxidation of Arsenic (III): Preparation, Characterization and Kinetics. Chem. Eng. J. 2018, 347, 91-100.
https://doi.org/10.1016/j.cej.2018.04.075

[52]. Uddin, M. N.; Alam, J.; Naher, S. R. Biosorption of Cr(III) from Aqueous Solution Using an Agricultural by-Product Jute Stick Powder: Equilibrium and Kinetic Studies. Eur. J. Chem. 2018, 9 (3), 202-212.
https://doi.org/10.5155/eurjchem.9.3.202-212.1709

[53]. Belhachemi, M.; Addoun, F. Comparative Adsorption Isotherms and Modeling of Methylene Blue onto Activated Carbons. Appl. Water Sci. 2011, 1 (3-4), 111-117.
https://doi.org/10.1007/s13201-011-0014-1

[54]. Choudhary, B.; Paul, D. Isotherms, Kinetics and Thermodynamics of Hexavalent Chromium Removal Using Biochar. J. Environ. Chem. Eng. 2018, 6 (2), 2335-2343.
https://doi.org/10.1016/j.jece.2018.03.028

[55]. Tan, W. T.; Ooi, S. T.; Lee, C. K. Removal of Chromium(VI) from Solution by Coconut Husk and Palm Pressed Fibres. Environ. Technol. 1993, 14 (3), 277-282.
https://doi.org/10.1080/09593339309385290

[56]. Gupta, S.; Babu, B. V. Utilization of Waste Product (Tamarind Seeds) for the Removal of Cr(VI) from Aqueous Solutions: Equilibrium, Kinetics, and Regeneration Studies. J. Environ. Manage. 2009, 90 (10), 3013-3022.
https://doi.org/10.1016/j.jenvman.2009.04.006

[57]. Guo, X.; Liu, A.; Lu, J.; Niu, X.; Jiang, M.; Ma, Y.; Liu, X.; Li, M. Adsorption Mechanism of Hexavalent Chromium on Biochar: Kinetic, Thermodynamic, and Characterization Studies. ACS Omega 2020, 5 (42), 27323-27331.
https://doi.org/10.1021/acsomega.0c03652

[58]. Tripathi, A.; Dwivedi, A. K. Studies on recovery of chromium from tannery wastewater by reverse osmosis. J. Ind. Pollution Control 2013, 289 (1), 29-34.


How to cite


Islam, I.; Ahmad, M.; Ahmad, M.; Rukh, S.; Ullah, I. Eur. J. Chem. 2022, 13(1), 78-90. doi:10.5155/eurjchem.13.1.78-90.2189
Islam, I.; Ahmad, M.; Ahmad, M.; Rukh, S.; Ullah, I. Kinetic studies and adsorptive removal of chromium Cr(VI) from contaminated water using green adsorbent prepared from agricultural waste, rice straw. Eur. J. Chem. 2022, 13(1), 78-90. doi:10.5155/eurjchem.13.1.78-90.2189
Islam, I., Ahmad, M., Ahmad, M., Rukh, S., & Ullah, I. (2022). Kinetic studies and adsorptive removal of chromium Cr(VI) from contaminated water using green adsorbent prepared from agricultural waste, rice straw. European Journal of Chemistry, 13(1), 78-90. doi:10.5155/eurjchem.13.1.78-90.2189
Islam, Izaz, Mushtaq Ahmad, Maqbool Ahmad, Shah Rukh, & Ihsan Ullah. "Kinetic studies and adsorptive removal of chromium Cr(VI) from contaminated water using green adsorbent prepared from agricultural waste, rice straw." European Journal of Chemistry [Online], 13.1 (2022): 78-90. Web. 18 May. 2022
Islam, Izaz, Ahmad, Mushtaq, Ahmad, Maqbool, Rukh, Shah, AND Ullah, Ihsan. "Kinetic studies and adsorptive removal of chromium Cr(VI) from contaminated water using green adsorbent prepared from agricultural waste, rice straw" European Journal of Chemistry [Online], Volume 13 Number 1 (31 March 2022)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.13.1.78-90.2189

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2022, 13(1), 78-90 | doi: https://doi.org/10.5155/eurjchem.13.1.78-90.2189 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.