European Journal of Chemistry

Synthesis, crystal structure, Hirshfeld surface analysis, and DFT studies on (2,2’-bipyridine)chlorobis(N,N-bis(thiophen-2-ylmethyl)dithiocarbamato-S,S’)zinc(II) complex

Crossmark


Main Article Content

Soundararajan Eswari
Subbiah Thirumaran

Abstract

Bis(N,N-bis(thiophen-2-ylmethyl)dithiocarbamato-S,S’)zinc(II) complex (1) and (2,2’-bipyridine)chlorobis(N,N-bis(thiophen-2-ylmethyl)dithiocarbamato-S,S’)zinc(II) complex (2) were synthesized. Complex 2 (final product) was structurally characterized by single crystal X-ray diffraction studies. Complex 2 (C21H18ClN3S4Zn) crystallized in triclinic crystal system with space group P-1 (no. 2), a = 8.7603(4) Å, b = 10.7488(6) Å, c = 13.0262(7) Å,    α = 103.965(2)°, β = 91.913(2)°, γ = 104.944(2)°, = 1144.07(10) Å3, Z = 2, T = 302(2) K, μ(MoKα) = 1.569 mm-1, Dcalc = 1.572 g/cm3, 14892 reflections measured (4.838° ≤ 2Θ ≤ 56.52°), 5570 unique (Rint = 0.0188, Rsigma = 0.0230) which were used in all calculations. The final R1 was 0.0810 (I > 2σ(I)) and wR2 was 0.2788 (all data). Complex 2 displays distorted square pyramidal coordination geometry. Crystal structure analysis of complex 2 shows that the crystal packing is mainly stabilized by C-H···π (chelate) and C-H···Cl interactions. Hirshfeld surface analysis was carried out to explore deeply into the nature and type of non-covalent interactions. The molecular and electronic structures of complexes 1 and 2 were also studied by DFT quantum chemical calculations.


icon graph This Abstract was viewed 530 times | icon graph Article PDF downloaded 188 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Eswari, S.; Thirumaran, S. Synthesis, Crystal Structure, Hirshfeld Surface Analysis, and DFT Studies on (2,2’-bipyridine)chlorobis(N,N-bis(thiophen-2-ylmethyl)dithiocarbamato-S,S’)zinc(II) Complex. Eur. J. Chem. 2022, 13, 91-98.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Maurya, V. K.; Singh, A. K.; Singh, R. P.; Yadav, S.; Kumar, K.; Prakash, P.; Prasad, L. B. Synthesis and Evaluation of Zn(II) Dithiocarbamate Complexes as Potential Antibacterial, Antibiofilm, and Antitumor Agents. J. Coord. Chem. 2019, 72 (19-21), 3338-3358.
https://doi.org/10.1080/00958972.2019.1693041

[2]. Alam, M. N.; Mandal, S. K.; Debnath, S. C. Effect of Zinc Dithio-carbamates and Thiazole-Based Accelerators on the Vulcanization of Natural Rubber. Rubber Chem. Technol. 2012, 85 (1), 120-131.
https://doi.org/10.5254/1.3672434

[3]. Gallagher, W. P.; Vo, A. Dithiocarbamates: Reagents for the Removal of Transition Metals from Organic Reaction Media. Org. Process Res. Dev. 2015, 19 (10), 1369-1373.
https://doi.org/10.1021/op500336h

[4]. Ajibade, P. A.; Mbese, J. Z.; Omondi, B. Group 12 Dithiocarbamate Complexes: Synthesis, Characterization, and X-Ray Crystal Structures of Zn(II) and Hg(II) Complexes and Their Use as Precursors for Metal Sulfide Nanoparticles. Inorg. nano-met. chem. 2017, 47 (2), 202-212.
https://doi.org/10.1080/15533174.2015.1137589

[5]. Tiekink, E. Exploring the Topological Landscape Exhibited by Binary Zinc-Triad 1,1-Dithiolates. Crystals (Basel) 2018, 8 (7), 292.
https://doi.org/10.3390/cryst8070292

[6]. Singh, V.; Kumar, V.; Gupta, A. N.; Drew, M. G. B.; Singh, N. Effect of Pyridyl Substituents Leading to the Formation of Green Luminescent Mercury(Ii) Coordination Polymers, Zinc(Ii) Dimers and a Monomer. New J Chem 2014, 38 (8), 3737.
https://doi.org/10.1039/C4NJ00435C

[7]. Kumar, V.; Manar, K. K.; Gupta, A. N.; Singh, V.; Drew, M. G. B.; Singh, N. Impact of Ferrocenyl and Pyridyl Groups Attached to Dithiocarbamate Moieties on Crystal Structures and Luminescent Characteristics of Group 12 Metal Complexes. J. Organomet. Chem. 2016, 820, 62-69.
https://doi.org/10.1016/j.jorganchem.2016.08.007

[8]. Gurumoorthy, G.; Thirumaran, S.; Ciattini, S. Unusual Octahedral Hg(II) Dithiocarbamate: Synthesis, Spectral and Structural Studies on Hg(II) Complexes with Pyrrole Based Dithiocarbamates and Their Utility for the Preparation of α- and β-HgS. Polyhedron 2016, 118, 143-153.
https://doi.org/10.1016/j.poly.2016.08.001

[9]. Eswari, S.; Selvaganapathi, P.; Thirumaran, S.; Ciattini, S. Effect of Solvent Used for Crystallization on Structure: Synthesis and Characterization of Bis(N,N-Di(4-Fluorobenzyl)Dithiocarbamato-S,S′) M(II) (M = Cd, Hg) and Usage as Precursor for CdS Nanophoto-catalyst. Polyhedron 2021, 206 (115330), 115330.
https://doi.org/10.1016/j.poly.2021.115330

[10]. Tan, Y. S.; Sudlow, A. L.; Molloy, K. C.; Morishima, Y.; Fujisawa, K.; Jackson, W. J.; Henderson, W.; Halim, S. N. B. A.; Ng, S. W.; Tiekink, E. R. T. Supramolecular Isomerism in a Cadmium Bis(N-Hydroxyethyl, N-Isopropyldithiocarbamate) Compound: Physiochemical Characteri-zation of Ball (n = 2) and Chain (n = ∞) Forms of Cd[S2CN(IPr)CH2 CH2OH]2·solventn. Cryst. Growth Des. 2013, 13 (7), 3046-3056.
https://doi.org/10.1021/cg400453x

[11]. Onwudiwe, D. C.; Nthwane, Y. B.; Ekennia, A. C.; Hosten, E. Synthesis, Characterization and Antimicrobial Properties of Some Mixed Ligand Complexes of Zn(II) Dithiocarbamate with Different N-Donor Ligands. Inorganica Chim. Acta 2016, 447, 134-141.
https://doi.org/10.1016/j.ica.2016.03.033

[12]. Selvaganapathi, P.; Thirumaran, S.; Ciattini, S. Structural Variations in Zinc(II) Complexes with N,N-Di(4-Fluorobenzyl)Dithiocarbamate and Imines: New Precursor for Zinc Sulfide Nanoparticles. Polyhedron 2018, 149, 54-65.
https://doi.org/10.1016/j.poly.2018.04.022

[13]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42 (2), 339-341.
https://doi.org/10.1107/S0021889808042726

[14]. Sheldrick, G. M. SHELXT - Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found. Adv. 2015, 71 (Pt 1), 3-8.
https://doi.org/10.1107/S2053273314026370

[15]. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71 (Pt 1), 3-8.
https://doi.org/10.1107/S2053229614024218

[16]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery J. A.; Vreven, J, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J. Cammi, R.; Pomelli, C. Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I. Martin, R. L.; Fox, D. J. Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez C.; Pople, J. A., Gaussian 03, Revision B.04, Gaussian, Inc., Pittsburgh PA, 2003.

[17]. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B Condens. Matter 1988, 37 (2), 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[18]. Wolff, S. K.; Grimwood, D. J.; Mckinnon, J. J.; Turner, M. J.; Jayatilaka, D.; Spackman, M. A., Crystal Explorer Ver. 3.1, University of Western Australia, Perth, Australia, 2013.

[19]. Spackman, M. A.; McKinnon, J. J.; Jayatilaka, D. Electrostatic Potentials Mapped on Hirshfeld Surfaces Provide Direct Insight into Intermolecular Interactions in Crystals. CrystEngComm 2008, 10 (4), 377-388.
https://doi.org/10.1039/b715227b

[20]. Sathiyaraj, E.; Srinivasan, T.; Thirumaran, S.; Velmurugan, D. Synthesis and Spectroscopic Characterization of Ni(II) Complexes Involving Functionalised Dithiocarbamates and Triphenylphosphine: Anagostic Interaction in (N-Cyclopropyl-N-(4-Fluorobenzyl)Dithiocarbamato-S,S′) (Thiocyanato-N)(Triphenylphosphine)Nickel(II). J. Mol. Struct. 2015, 1102, 203-209.
https://doi.org/10.1016/j.molstruc.2015.08.053

[21]. Sattigeri, V. J.; Soni, A.; Singhal, S.; Khan, S.; Pandya, M.; Bhateja, P.; Mathur, T.; Rattan, A.; Khanna, J. M.; Mehta, A. Synthesis and Antimicrobial Activity of Novel Thiazolidinones. ARKIVOC 2005, 2005 (2), 46-59.
https://doi.org/10.3998/ark.5550190.0006.205

[22]. Lai, C. S.; Tiekink, E. R. T. Crystallographic Report: Chloro(N,N-Diethyl dithiocarbamato)(4, 7-Dimethyl-1, 10-Phenanthroline) Mercury(II) Hemi-Chloroform Solvate. Appl. Organomet. Chem. 2003, 17 (2), 141-142.
https://doi.org/10.1002/aoc.391

[23]. Tiekink, E. R. T.; Wardell, J. L.; Wardell, S. M. S. V. Hydrogen-Bonding Interactions in the Crystal Structure of Bis(N-Propyl-N-(2-Hydroxy ethyl)Dithiocarbamato-S,S′)Nickel(II): Ni[S2CN(NPr)(CH2CH2OH)]2. J. Chem. Crystallogr. 2007, 37 (7), 439-443.
https://doi.org/10.1007/s10870-007-9189-6

[24]. Alverdi, V.; Giovagnini, L.; Marzano, C.; Seraglia, R.; Bettio, F.; Sitran, S.; Graziani, R.; Fregona, D. Characterization Studies and Cytotoxicity Assays of Pt(II) and Pd(II) Dithiocarbamate Complexes by Means of FT-IR, NMR Spectroscopy and Mass Spectrometry. J. Inorg. Biochem. 2004, 98 (6), 1117-1128.
https://doi.org/10.1016/j.jinorgbio.2004.03.011

[25]. Sathiyaraj, E.; Thirumaran, S.; Selvanayagam, S.; Sridhar, B.; Ciattini, S. C H⋯Ni and C H⋯π(Chelate) Interactions in Nickel(II) Complexes Involving Functionalized Dithiocarbamates and Triphenylphosphine. J. Mol. Struct. 2018, 1159, 156-166.
https://doi.org/10.1016/j.molstruc.2018.01.038

[26]. Tiekink, E. R. T. The Remarkable Propensity for the Formation of C-H⋯π(Chelate Ring) Interactions in the Crystals of the First-Row Transition Metal Dithiocarbamates and the Supramolecular Architectures They Sustain. CrystEngComm 2020, 22 (43), 7308-7333.
https://doi.org/10.1039/D0CE00289E

[27]. Mangasuli, S. N.; Hosamani, K. M.; Managutti, P. B. Synthesis of Novel Coumarin Derivatives Bearing Dithiocarbamate Moiety: An Approach to Microwave, Molecular Docking, Hirshfeld Surface Analysis, DFT Studies and Potent Anti-Microbial Agents. J. Mol. Struct. 2019, 1195, 58-72.
https://doi.org/10.1016/j.molstruc.2018.12.049

[28]. Mehmood, T.; Bhosale, R. S.; Reddy, J. P. Bis(2-Methylpyridinium) Tetrachloridocuprate(II): Synthesis, Structure and Hirshfeld Surface Analysis. Acta Crystallogr. E Crystallogr. Commun. 2021, 77 (7), 726-729.
https://doi.org/10.1107/S2056989021006277

[29]. Lakshmanan, P.; Thirumaran, S.; Ciattini, S. Synthesis, Spectral and Structural Studies on NiS2PN and NiS2P2 Chromophores and Use of Ni(II) Dithiocarbamate to Synthesize Nickel Sulfide and Nickel Oxide for Photodegradation of Dyes. J. Mol. Struct. 2020, 1220 (128704), 128704.
https://doi.org/10.1016/j.molstruc.2020.128704

[30]. Prabhuswamy, A.; Mohammed, Y. H. E.; Al-Ostoot, F. H.; Venkatesh, G. D.; Anandalwar, S. M.; Khanum, S. A.; Krishnappagowda, L. N. Synthesis, Crystal Structure Elucidation, Hirshfeld Surface Analysis, 3D Energy Frameworks and DFT Studies of 2-(4-Fluorophenoxy) Acetic Acid. Eur. J. Chem. 2021, 12 (3), 304-313.
https://doi.org/10.5155/eurjchem.12.3.304-313.2099

[31]. Krishnan, K. G.; Thanikachalam, V. Synthesis, Spectral, Crystallo-graphic, and Computational Investigation of a Novel Molecular Hybrid 3-(1-((Benzoyloxy)Imino)Ethyl)-2H-Chromen-2-Ones. Eur. J. Chem. 2021, 12 (2), 133-146.
https://doi.org/10.5155/eurjchem.12.2.133-146.2073

[32]. Yu, X.; Wang, N.; He, H.; Wang, L. Theoretical Investigations of the Structures and Electronic Spectra of Zn(II) and Ni(II) Complexes with Cyclohexylamine-N-Dithiocarbamate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 122, 283-287.
https://doi.org/10.1016/j.saa.2013.11.027

[33]. Adole, V. A.; Jagdale, B. S.; Pawar, T. B.; Sawant, A. B. Experimental and Theoretical Exploration on Single Crystal, Structural, and Quantum Chemical Parameters of (E)‐7‐(Arylidene)‐1,2,6, 7‐tetrahydro‐8 H ‐indeno[5,4‐ b ]Furan‐8‐one Derivatives: A Comparative Study. J. Chin. Chem. Soc. 2020, 67 (10), 1763-1777.
https://doi.org/10.1002/jccs.202000006

[34]. Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. A Molecular Electron Density Theory Study of the Participation of Tetrazines in Aza-Diels-Alder Reactions. RSC Adv. 2020, 10 (26), 15394-15405.
https://doi.org/10.1039/D0RA01548B

Supporting Agencies

The American Chemical Society Petroleum Research Fund (PRF# 12345-AC1), the State of Delaware, the National Institute of General Medical Sciences (P20GM123456) from the National Institutes of Health (INBRE program), and a NSF EPSCoR grant IIA-1234567.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).