European Journal of Chemistry 2022, 13(1), 99-108 | doi: https://doi.org/10.5155/eurjchem.13.1.99-108.2213 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Characterization of PLA nanofiber structures containing herbal extracts


Nilsen Sunter Eroglu (1,*) orcid , Suat Canoglu (2) orcid

(1) Department of Textile and Fashion Design, Faculty of Fine Arts, Halic University, Istanbul, 34421, Turkey
(2) Department of Textile Engineering, Faculty of Technology, Marmara University, Istanbul, 34730, Turkey
(*) Corresponding Author

Received: 15 Nov 2021 | Revised: 14 Jan 2022 | Accepted: 26 Jan 2022 | Published: 31 Mar 2022 | Issue Date: March 2022

Abstract


The use of renewable, sustainable, and biocompatible products without chemical side effects is increasing day by day in antibacterial applications instead of materials that harm nature and humans. In biomedicine, antibacterial nanofiber composite surfaces with generally produced from materials with antibacterial properties such as chitosan, hyaluronic acid, collagen, and silver nanoparticles. In this study, olive leaf, terebinth, and fumitory plants and biocompatible, biodegradable, and environmentally friendly polylactic acid (PLA) polymer were used to obtain nanofiber structures with 100% plant extracts. Viscosity and conductivity of solutions prepared with optimum properties were analysed, the nanofiber material was produced in solution with electrospinning method, and the morphological evaluation and mechanical measurement of the nanofiber material were performed. Finally, bacterial exchange analyses were performed before and after incubation in the UV-VIS spectrophotometer. As a result of the study, the thinnest and the most uniform fiber materials were found in CFO (consist of PLA (C1) and fumitory (FO)) coded nanofiber material, the best strength values were found in COE (consist of PLA (C1) and olive leaf (OE)) coded nanofiber structure, and the highest bacterial exchange was observed in CFO coded nanofiber material. Based on these results, it has been suggested that the CFO coded nanofiber structure can be used in biomedicine. It has been observed that olive leaf, terebinth, and fumitory plant extracts, which can be grown easily in every region in Turkey, have a significant level of bacterial resistance. In conclusion, fumitory and terebinth plants can be used in antibacterial agent applications since they allow obtaining smooth and uniform nanofiber structures, and thanks to their high bacteria nullification properties.


Keywords


Fumitory; Olive leaf; Terebinth; Nanofiber; Polylactic acid; Electrospinning

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.13.1.99-108.2213

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 79 times | icon graph PDF Article downloaded 22 times

Funding information


The Scientific Research Project Unite (BAP) (Project number: FEN-C-DRP-090518-0246), Marmara University, Istanbul, Turkey.

References


[1]. Göktaş, B.; Gidik, B. Bayburt ilinde doğadan toplanan tibbi ve aromatik bitkilerin tüketimi. Res. Stud. Anatolia J. 2019, 303-311.
https://doi.org/10.33723/rs.596673

[2]. Yao, C.-H.; Yeh, J.-Y.; Chen, Y.-S.; Li, M.-H.; Huang, C.-H. Wound-healing effect of electrospun gelatin nanofibres containingCentella asiaticaextract in a rat model: Wound healing effect of EGC membrane. J. Tissue Eng. Regen. Med. 2017, 11, 905-915.
https://doi.org/10.1002/term.1992

[3]. Karami, Z.; Rezaeian, I.; Zahedi, P.; Abdollahi, M. Preparation and performance evaluations of electrospun poly(ε-caprolactone), poly(lactic acid), and their hybrid (50/50) nanofibrous mats containing thymol as an herbal drug for effective wound healing. J. Appl. Polym. Sci. 2013, 129, 756-766.
https://doi.org/10.1002/app.38683

[4]. Lin, S.; Chen, M.; Jiang, H.; Fan, L.; Sun, B.; Yu, F.; Yang, X.; Lou, X.; He, C.; Wang, H. Green electrospun grape seed extract-loaded silk fibroin nanofibrous mats with excellent cytocompatibility and antioxidant effect. Colloids Surf. B Biointerfaces 2016, 139, 156-163.
https://doi.org/10.1016/j.colsurfb.2015.12.001

[5]. Motealleh, B.; Zahedi, P.; Rezaeian, I.; Moghimi, M.; Abdolghaffari, A. H.; Zarandi, M. A. Morphology, drug release, antibacterial, cell proliferation, and histology studies of chamomile-loaded wound dressing mats based on electrospun nanofibrous poly(ɛ-caprolactone)/polystyrene blends: Morphology, Drug Release, Antibacterial, Cell Proliferation, and Histology Studies. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 977-987.
https://doi.org/10.1002/jbm.b.33078

[6]. Pretula, J.; Slomkowski, S.; Penczek, S. Polylactides-Methods of synthesis and characterization. Adv. Drug Deliv. Rev. 2016, 107, 3-16.
https://doi.org/10.1016/j.addr.2016.05.002

[7]. Saini, P.; Arora, M.; Kumar, M. N. V. R. Poly(lactic acid) blends in biomedical applications. Adv. Drug Deliv. Rev. 2016, 107, 47-59.
https://doi.org/10.1016/j.addr.2016.06.014

[8]. Langer, R.; Basu, A.; Domb, A. J. Special issue: Polylactide (PLA) based biopolymers. Adv. Drug Deliv. Rev. 2016, 107, 1-2.
https://doi.org/10.1016/j.addr.2016.11.002

[9]. Huang, C. L.; Sumpio, B. E. Olive oil, the mediterranean diet, and cardiovascular health. J. Am. Coll. Surg. 2008, 207, 407-416.
https://doi.org/10.1016/j.jamcollsurg.2008.02.018

[10]. Omar, S. H. Oleuropein in olive and its pharmacological effects. Sci. Pharm. 2010, 78, 133-154.
https://doi.org/10.3797/scipharm.0912-18

[11]. Martín-Vertedor, D.; Garrido, M.; Pariente, J. A.; Espino, J.; Delgado-Adámez, J. Bioavailability of bioactive molecules from Olive leaf extracts and its functional value: Potential health benefits of Olive leaf extract. Phytother. Res. 2016, 30, 1172-1179.
https://doi.org/10.1002/ptr.5625

[12]. Doğan, G. Elektrolif Çekim Yöntemiyle Elde Edilen Biyopolimer Nanoliflerin Doku Mühendisliği ve ilaç Salımı Uygulamalarında Kullanım Olanaklarının Araştırılması. Ph.D. Dissertation, Ege Üniversitesi, İzmir, Türkiye, 2012.

[13]. Fki, I.; Sayadi, S.; Mahmoudi, A.; Daoued, I.; Marrekchi, R.; Ghorbel, H. Comparative study on beneficial effects of hydroxytyrosol- and oleuropein-rich Olive leaf extracts on high-fat diet-induced lipid metabolism disturbance and liver injury in rats. Biomed Res. Int. 2020, 2020, 1315202.
https://doi.org/10.1155/2020/1315202

[14]. Pereira, A. P.; Ferreira, I. C. F. R.; Marcelino, F.; Valentão, P.; Andrade, P. B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J. A. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules 2007, 12, 1153-1162.
https://doi.org/10.3390/12051153

[15]. Sudjana, A. N.; D'Orazio, C.; Ryan, V.; Rasool, N.; Ng, J.; Islam, N.; Riley, T. V.; Hammer, K. A. Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int. J. Antimicrob. Agents 2009, 33, 461-463.
https://doi.org/10.1016/j.ijantimicag.2008.10.026

[16]. Markin, D.; Duek, L.; Berdicevsky, I. In vitro antimicrobial activity of olive leaves. Antimikrobielle Wirksamkeit von Olivenblattern in vitro. Mycoses 2003, 46, 132-136.
https://doi.org/10.1046/j.1439-0507.2003.00859.x

[17]. Balta, A. B. Development of natural compound loaded nanofibers by electrospinning, MSc Dissertation, İzmir Institute of Technology, The Graduate School of Engineering and Sciences, İzmir, Turkey, 2010.

[18]. Eroglu, S. N.; Canoglu, S.; Yuksek, M. Characterization, mechanical, and antibacterial properties of nanofibers derived from olive leaf, fumitory, and terebinth extracts. Turk. J. Chem. 2020, 44, 1043-1057.
https://doi.org/10.3906/kim-2003-45

[19]. Bozorgi, M.; Memariani, Z.; Mobli, M.; Salehi Surmaghi, M. H.; Shams-Ardekani, M. R.; Rahimi, R. Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): a review of their traditional uses, phytochemistry, and pharmacology. ScientificWorldJournal 2013, 2013, 219815.
https://doi.org/10.1155/2013/219815

[20]. Topçu, G.; Ay, M.; Bilici, A.; Sarıkürkcü, C.; Öztürk, M.; Ulubelen, A. A new flavone from antioxidant extracts of Pistacia terebinthus. Food Chem. 2007, 103, 816-822.
https://doi.org/10.1016/j.foodchem.2006.09.028

[21]. Dogan, C. Menengiç ve Bazı Sert Kabuklu Meyve Dış Kabuklarına Ait Ekstraktların Antimikrobiyal ve Antioksidan Özelliklerinin Belirlenmesi ve Meyveli Yoğurt Üretiminde Kullanımı, Ph.D. Dissertation, Harran Üniversitesi, Şanlıurfa, Türkiye, 2016.

[22]. Giner-Larza, E. M.; Máñez, S.; Giner, R. M.; Recio, M. C.; Prieto, J. M.; Cerdá-Nicolás, M.; Ríos, J. L. Anti-inflammatory triterpenes from Pistacia terebinthus galls. Planta Med. 2002, 68, 311-315.
https://doi.org/10.1055/s-2002-26749

[23]. Benhammou, N.; Bekkara, F. A.; Panovska, T. K. Antioxidant and antimicrobial activities of the Pistacia lentiscus and Pistacia atlantica extracts. Afr. J. Pharm. Pharmacol. 2008, 2, 022-028.

[24]. Al-Snafi, A. E. Constituents and pharmacology of Fumaria officinalis-A review. J. Pharm. 2020, 10 (1), 17-25. http://iosrphr.org/papers/ vol10-issue1/C1001011725.pdf (accessed January 20, 2022).

[25]. Turan, S. Ülkemizde Yaygın Olarak Kullanılan Bazı Tıbbi Bitkilerin Yapraklarında Ağır Metal Ve Mineral Besin Element İçeriklerinin Tayini, Ms Dissertation, Marmara Üniversitesi, İstanbul, Türkiye, 2014.

[26]. Dulger, B.; Gonuz, A. Antimicrobial activity of certain plants used in Turkish traditional medicine. Asian J. Plant Sci. 2003, 3, 104-107.
https://doi.org/10.3923/ajps.2004.104.107

[27]. Peršin, Z.; Ravber, M.; Stana Kleinschek, K.; Knez, Ž.; Škerget, M.; Kurečič, M. Bio-nanofibrous mats as potential delivering systems of natural substances. Text. Res. J. 2017, 87, 444-459.
https://doi.org/10.1177/0040517516631323

[28]. Doğan, G.; Başal, G.; Bayraktar, O.; Özyildiz, F.; Uzel, A.; Erdoğan, İ. Bioactive Sheath/Core nanofibers containing olive leaf extract: nanofibers containing olive leaf extract. Microsc. Res. Tech. 2016, 79, 38-49.
https://doi.org/10.1002/jemt.22603

[29]. Luque de Castro, M. D.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A 2010, 1217, 2383-2389.
https://doi.org/10.1016/j.chroma.2009.11.027

[30]. Erdogan, I.; Demir, M.; Bayraktar, O. Olive leaf extract as a crosslinking agent for the preparation of electrospun zein fibers. J. Appl. Polym. Sci. 2015, 132, 41338.
https://doi.org/10.1002/app.41338

[31]. Erdogrul, Ö. T. Antibacterial activities of some plant extracts used in folk medicine. Pharm. Biol. 2002, 40, 269-273.
https://doi.org/10.1076/phbi.40.4.269.8474

[32]. Demirpek U. Antimicrobial Susceptibility Tests, Turkish Society of Clinical Microbiology and Infectious Diseases, 2012.

[33]. Huang, Z.-M.; Zhang, Y.-Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223-2253.
https://doi.org/10.1016/S0266-3538(03)00178-7

[34]. Islam, M. T.; Laing, R. M.; Wilson, C. A.; McConnell, M.; Ali, M. A. Fabrication and characterization of 3-dimensional electrospun poly(vinyl alcohol)/keratin/chitosan nanofibrous scaffold. Carbohydr. Polym. 2022, 275, 118682.
https://doi.org/10.1016/j.carbpol.2021.118682

[35]. Zheng, J.; He, A.; Li, J.; Xu, J.; Han, C. C. Studies on the controlled morphology and wettability of polystyrene surfaces by electro-spinning or electrospraying. Polymer (Guildf.) 2006, 47, 7095-7102.
https://doi.org/10.1016/j.polymer.2006.08.019

[36]. Tan, S.-H.; Inai, R.; Kotaki, M.; Ramakrishna, S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer (Guildf.) 2005, 46, 6128-6134.
https://doi.org/10.1016/j.polymer.2005.05.068

[37]. Erdem, R. Nanolif Bazlı Yara Örtüsü Yüzeyi Geliştirilmesi, Ph. D. Dissertation, Marmara Üniversitesi, İstanbul, Türkiye, 2013.

[38]. Rolandi, M.; Rolandi, R. Self-assembled chitin nanofibers and applications. Adv. Colloid Interface Sci. 2014, 207, 216-222.
https://doi.org/10.1016/j.cis.2014.01.019

[39]. Avci, H.; Gergeroglu, H. Synergistic effects of plant extracts and polymers on structural and antibacterial properties for wound healing. Polym. Bull. (Berl.) 2019, 76, 3709-3731.
https://doi.org/10.1007/s00289-018-2578-5

[40]. Kaya, M.; Khadem, S.; Cakmak, Y. S.; Mujtaba, M.; Ilk, S.; Akyuz, L.; Salaberria, A. M.; Labidi, J.; Abdulqadir, A. H.; Deligöz, E. Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging. RSC Adv. 2018, 8, 3941-3950.
https://doi.org/10.1039/C7RA12070B

[41]. Abdullah@Shukry, N. A.; Ahmad Sekak, K.; Ahmad, M. R.; Bustami Effendi, T. J. Characteristics of Electrospun PVA-Aloe vera Nanofibres Produced via Electrospinning. In Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014); Springer Singapore: Singapore, 2014; pp. 7-11.
https://doi.org/10.1007/978-981-287-011-7_2

[42]. Ikhmal, W. M. K. W. M.; Yasmin, M. Y. N.; Fazira, M. F. M.; Rafizah, W. A. W.; Wan Nik, W. B.; Sabri, M. G. M. Anticorrosion Coating using Olea sp. Leaves Extract. IOP Conf. Ser. Mater. Sci. Eng. 2018, 344, 012028.
https://doi.org/10.1088/1757-899X/344/1/012028

[43]. Bayçin, D.; Altiok, E.; Ulkü, S.; Bayraktar, O. Adsorption of olive leaf (Olea europaea L.) antioxidants on silk fibroin. J. Agric. Food Chem. 2007, 55, 1227-1236.
https://doi.org/10.1021/jf062829o

[44]. Farah, S.; Anderson, D. G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367-392.
https://doi.org/10.1016/j.addr.2016.06.012

[45]. Yang, S.-L.; Wu, Z.-H.; Yang, W.; Yang, M.-B. Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym. Test. 2008, 27, 957-963.
https://doi.org/10.1016/j.polymertesting.2008.08.009

[46]. Avci, H.; Monticello, R.; Kotek, R. Preparation of antibacterial PVA and PEO nanofibers containing Lawsonia Inermis (henna) leaf extracts. J. Biomater. Sci. Polym. Ed. 2013, 24, 1815-1830.
https://doi.org/10.1080/09205063.2013.804758


How to cite


Eroglu, N.; Canoglu, S. Eur. J. Chem. 2022, 13(1), 99-108. doi:10.5155/eurjchem.13.1.99-108.2213
Eroglu, N.; Canoglu, S. Characterization of PLA nanofiber structures containing herbal extracts. Eur. J. Chem. 2022, 13(1), 99-108. doi:10.5155/eurjchem.13.1.99-108.2213
Eroglu, N., & Canoglu, S. (2022). Characterization of PLA nanofiber structures containing herbal extracts. European Journal of Chemistry, 13(1), 99-108. doi:10.5155/eurjchem.13.1.99-108.2213
Eroglu, Nilsen, & Suat Canoglu. "Characterization of PLA nanofiber structures containing herbal extracts." European Journal of Chemistry [Online], 13.1 (2022): 99-108. Web. 18 May. 2022
Eroglu, Nilsen, AND Canoglu, Suat. "Characterization of PLA nanofiber structures containing herbal extracts" European Journal of Chemistry [Online], Volume 13 Number 1 (31 March 2022)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.13.1.99-108.2213

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2022, 13(1), 99-108 | doi: https://doi.org/10.5155/eurjchem.13.1.99-108.2213 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.