European Journal of Chemistry

Pyrrolidinecarbodithioate as a planarity chuck in the search for cis-platin analogues of nickel: Spectral, single crystal X-ray structural, BVS, and CSM analysis of some planar nickel(II) mixed ligand complexes

Crossmark


Main Article Content

Kuppukkannu Ramalingam
Murugesan Saravanan
Gabriele Bocelli
Lara Righi
Yurii Chumakov
Andrea Cantoni

Abstract

[Ni(pyrdtc)(PPh3)(NCS)] (1), [Ni(pyrdtc)(4-MP)(NCS)] (2), [Ni(pyrdtc)(PPh3)(CN)]·H2O (3), [Ni(pyrdtc)(PPh3)2]ClO4 (4), and [Ni(pyrdtc)(P͡P)]BPh4·2H2O (5) [where pyrdtc: Pyrrolidine carbodithioate/S͡S, PPh3: Triphenylphosphine, 4-MP: Tri(4-methylphenyl)phosphine, dppe/P͡P: 1,2-Bis(diphenylphosphino)ethane] have been prepared from the parent bis-dithiocarbamate, [Ni(pyrdtc)]2 (6). The prepared compounds were characterized by electronic, IR, 1H, 13C, and 31P NMR spectra. In the IR spectra of the compounds, thioureide bands are observed at higher wavenumbers for the mixed ligand complexes 1-5 (1528-1540 cm-1) than the parent compound (1490 cm-1). Cyclic voltammetry showed an increasing order of reduction potentials: 5 << 1 ~ 2 < 3 < 4 << [Ni(pyrdtc)2] indicating an alleviation of electron density on nickel in the mixed complexes compared to the parent compound. Single crystal X-ray structure of the complexes displayed planar geometry around nickel which is in keeping with their diamagnetism. Bond Valence Sums calculated with the corrected Rij indicated the divalent nature of nickel with predominant covalent interactions. Continuous shape measure analysis of the mixed ligand chromophores stipulates a planar square environment around central nickel atom and deviation to tetrahedral or trigonal bipyramidal variants are absolutely negated. In this study, CSM analysis of cis-platin, a clinical anti-cancer agent, showed a comparable shape measure as those of the mixed ligand complexes 1-5. Hence, pyrrolidinecarbodithioate acts as a ‘chuck’ in compounds 1-5 to stabilize the planar square shape of the nickel chromophores and provides a suitable template to synthesize analogues of cis-platin.


icon graph This Abstract was viewed 826 times | icon graph Article PDF downloaded 303 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Ramalingam, K.; Saravanan, M.; Bocelli, G.; Righi, L.; Chumakov, Y.; Cantoni, A. Pyrrolidinecarbodithioate As a Planarity Chuck in the Search for Cis-Platin Analogues of Nickel: Spectral, Single Crystal X-Ray Structural, BVS, and CSM Analysis of Some Planar nickel(II) Mixed Ligand Complexes. Eur. J. Chem. 2022, 13, 117-125.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Angeloski, A.; Cortie, M. B.; Scott, J. A.; Bordin, D. M.; McDonagh, A. M. Conversion of single crystals of a nickel(II) dithiocarbamate complex to nickel sulfide crystals. Inorganica Chim. Acta 2019, 487, 228-233.
https://doi.org/10.1016/j.ica.2018.12.014

[2]. Yan, Y.; Krishnakumar, S.; Yu, H.; Ramishetti, S.; Deng, L.-W.; Wang, S.; Huang, L.; Huang, D. Nickel(II) dithiocarbamate complexes containing sulforhodamine B as fluorescent probes for selective detection of nitrogen dioxide. J. Am. Chem. Soc. 2013, 135, 5312-5315.
https://doi.org/10.1021/ja401555y

[3]. Roffey, A.; Hollingsworth, N.; Hogarth, G. Synthesis of ternary sulfide nanomaterials using dithiocarbamate complexes as single source precursors. Nanoscale Adv. 2019, 1, 3056-3066.
https://doi.org/10.1039/C9NA00275H

[4]. Al-Jibori, S. A.; Al-Janabi, A. S. M.; Al-Sahan, S. W. M.; Wagner, C. Pd (II)- pyrrolidine dithiocarbamate complexes: Synthesis, spectroscopic studies and molecular structure of [Pd(PyDT)(ppy)]. J. Mol. Struct. 2021, 1227, 129524.
https://doi.org/10.1016/j.molstruc.2020.129524

[5]. Liu, Y.; Xing, Z.; Zhang, X.; Liang, G. Inorganic anion-dependent assembly of zero-, one-, two- and three-dimensional Cu(II)/Ag(I) complexes under the guidance of the HSAB theory: Synthesis, structure, and magnetic property. J. Solid State Chem. 2017, 246, 48-56.
https://doi.org/10.1016/j.jssc.2016.10.030

[6]. Hogarth, G. Metal-dithiocarbamate complexes: chemistry and biolo-gical activity. Mini Rev. Med. Chem. 2012, 12, 1202-1215.
https://doi.org/10.2174/138955712802762095

[7]. Ramalingam, K.; Srinivasan, S.; Rizzoli, C. Solvothermal preparation of nano cobalt sulfide from tris (cyclohexylpiperazinedithiocarbamato) cobalt(III) and characterization, single crystal X-ray crystal structure of the precursor. J. Coord. Chem. 2021, 73, 3487-3499.
https://doi.org/10.1080/00958972.2020.1859106

[8]. Ramalingam, K.; Srinivasan, S. Synthesis, spectral, single crystal X-ray structural, CShM and BVS characterization of iron(III) cyclohexyl dithiocarbamates and their solvothermal decomposition to nano iron(II) sulphide. J. Mol. Struct. 2015, 1100, 290-298.
https://doi.org/10.1016/j.molstruc.2015.07.036

[9]. Manohar, A.; Ramalingam, K.; Thiruneelakandan, R.; Bocelli, G.; Righi, L. Steric and electronic effects of chelating phosphines: Synthesis, spectral, and single crystal X-ray structural studies on [1,3-bis(di phenylphosphino-k,P,P′)propane](diisopropyldithiocarbamato) nickel (II) perchlorate and [1,3-bis(diphenylphosphino-k,P,P′)propane](pi peridinecarbodithioato)nickel(II) perchlorate. Z. Anorg. Allg. Chem. 2001, 627, 1103-1108.
https://doi.org/10.1002/1521-3749(200105)627:5<1103::AID-ZAAC1103>3.0.CO;2-8

[10]. Arshad, M.; Wang, Z.; Nasir, J. A.; Amador, E.; Jin, M.; Li, H.; Chen, Z.; Rehman, Z. U.; Chen, W. Single source precursor synthesized CuS nanoparticles for NIR phototherapy of cancer and photodegradation of organic carcinogen. J. Photochem. Photobiol. B 2021, 214, 112084.
https://doi.org/10.1016/j.jphotobiol.2020.112084

[11]. Roffey, A.; Hollingsworth, N.; Islam, H.-U.; Mercy, M.; Sankar, G.; Catlow, C. R. A.; Hogarth, G.; de Leeuw, N. H. Phase control during the synthesis of nickel sulfide nanoparticles from dithiocarbamate precursors. Nanoscale 2016, 8, 11067-11075.
https://doi.org/10.1039/C6NR00053C

[12]. Ramalingam, K.; Srinivasan, S.; Ethirajavalli, R.; Rizzoli, C. Quantification of distortions associated with planar NiS4, NiS2NP and NiS2P2 chromophores: Synthesis, structural and CSM analysis. Polyhedron 2016, 104, 138-144.
https://doi.org/10.1016/j.poly.2015.11.045

[13]. Srinivasan, S.; Ramalingam, K.; Rizzoli, C. Trans influence and steric effect on the distortions in planar NiS4, NiS2PN, and NiS2P2 chromophores. Z. Anorg. Allg. Chem. 2012, 638, 1356-1361.
https://doi.org/10.1002/zaac.201200103

[14]. Srinivasan, S.; Ramalingam, K.; Rizzoli, C. Synthesis, NMR and single crystal X-ray structural studies on planar NiS4 and NiS2PN chromo-phores: Steric and electronic effects. Polyhedron 2012, 33, 60-66.
https://doi.org/10.1016/j.poly.2011.11.027

[15]. Bhaskaran, R.; Ramalingam, K.; Bocelli, G.; Cantoni, A.; Rizzoli, C. Steric and electronic effects of N -coordinated NC − and NCS− on NiS2PN: synthesis, spectral and single crystal X-ray structural studies on N, N ′-di- n -butyldithiocarbamate complexes of nickel(II) with phosphorus and nitrogen donor ligands. J. Coord. Chem. 2008, 61, 1710-1719.
https://doi.org/10.1080/00958970701761898

[16]. Arul Prakasam, B.; Ramalingam, K.; Bocelli, G.; Cantoni, A. Steric and electronic effects of substituents on planar nickel(II) complexes: Synthesis, NMR spectral and single crystal X-ray structural studies on nickel(II) dithiocarbamates with NiS2PN, NiS2PC, and NiS2P2 Chromophores. Bull. Chem. Soc. Jpn. 2006, 79, 113-117.
https://doi.org/10.1246/bcsj.79.113

[17]. Thiruneelakandan, R.; Ramalingam, K.; Bocelli, G.; Righi, L. Synthesis, spectral, cyclic voltammetric studies, and single crystal X-ray structure determination of the planar NiS2P2, NiS2PN, and NiS2PC chromophores. Z. Anorg. Allg. Chem. 2005, 631, 187-193.
https://doi.org/10.1002/zaac.200400245

[18]. Ramalingam, K.; Thiruneelakandan, R.; Bocelli, G.; Righi, L. Trans influence of triphenylphosphines and pseudohalogens on Ni-S bonds: Synthesis, spectral and single crystal X-ray structural studies on NiS2PN and NiS2PC chromophores. Open Chem. 2012, 10, 1199-1207.
https://doi.org/10.2478/s11532-012-0041-2

[19]. Bobinihi, F. F.; Onwudiwe, D. C.; Ekennia, A. C.; Okpareke, O. C.; Arderne, C.; Lane, J. R. Group 10 metal complexes of dithiocarbamates derived from primary anilines: Synthesis, characterization, computa-tional and antimicrobial studies. Polyhedron 2019, 158, 296-310.
https://doi.org/10.1016/j.poly.2018.10.073

[20]. Han, J.; Zhang, W.; Zhou, T.; Wang, X.; Xu, R. Nickel-complexes with a mixed-donor ligand for photocatalytic hydrogen evolution from aqueous solutions under visible light. RSC Adv. 2012, 2, 8293-8296.
https://doi.org/10.1039/c2ra21422a

[21]. Gao, M.-R.; Xu, Y.-F.; Jiang, J.; Yu, S.-H. Nanostructured metal chalcoge-nides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 2013, 42, 2986-3017.
https://doi.org/10.1039/c2cs35310e

[22]. Kershaw, S. V.; Susha, A. S.; Rogach, A. L. Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostruc-tures, assemblies, electronic and infrared optical properties. Chem. Soc. Rev. 2013, 42, 3033-3087.
https://doi.org/10.1039/c2cs35331h

[23]. Abu-Surrah, A. S.; Kettunen, M. Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin. Curr. Med. Chem. 2006, 13, 1337-1357.
https://doi.org/10.2174/092986706776872970

[24]. Weiss, R. B.; Christian, M. C. New cisplatin analogues in development. A review: A Review. Drugs 1993, 46, 360-377.
https://doi.org/10.2165/00003495-199346030-00003

[25]. Lebwohl, D.; Canetta, R. Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur. J. Cancer 1998, 34, 1522-1534.
https://doi.org/10.1016/S0959-8049(98)00224-X

[26]. Wong, E.; Giandomenico, C. M. Current status of platinum-based antitumor drugs. Chem. Rev. 1999, 99, 2451-2466.
https://doi.org/10.1021/cr980420v

[27]. Amable, L. Cisplatin resistance and opportunities for precision medicine. Pharmacol. Res. 2016, 106, 27-36.
https://doi.org/10.1016/j.phrs.2016.01.001

[28]. Reedijk, J. Improved understanding in platiniumantitumour chemistry. Chem. Commun. (Camb.) 1996, 7, 801-806.
https://doi.org/10.1039/cc9960000801

[29]. Miller, R. P.; Tadagavadi, R. K.; Ramesh, G.; Reeves, W. B. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel) 2010, 2, 2490-2518.
https://doi.org/10.3390/toxins2112490

[30]. Milbeo, P.; Quintin, F.; Moulat, L.; Didierjean, C.; Martinez, J.; Bantreil, X.; Calmès, M.; Lamaty, F. Synthesis, characterisation and cytotoxic activity evaluation of new metal-salen complexes based on the 1,2-bicyclo[2.2.2]octane bridge. Tetrahedron Lett. 2021, 63, 152706.
https://doi.org/10.1016/j.tetlet.2020.152706

[31]. Bruker (2009). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

[32]. Bruker AXS, Inc.6300, Enterprise Lane, Madison, Wi. 5179-1173. USA.

[33]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.
https://doi.org/10.1107/S0021889808042726

[34]. Faruggia, L. J. ORTEP-3 for Windows, University of Glassgow, Scotland, U K, 1999.

[35]. Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. Mercury 4.0: from visualization to analysis, design and predic-tion. J. Appl. Crystallogr. 2020, 53, 226-235.
https://doi.org/10.1107/S1600576719014092

[36]. Sharma, M.; Kumar, L.; Jain, A.; Verma, V.; Sharma, V.; Kushwaha, B.; Lal, N.; Kumar, L.; Rawat, T.; Dwivedi, A. K.; Maikhuri, J. P.; Sharma, V. L.; Gupta, G. Designed chemical intervention with thiols for prophylactic contraception. PLoS One 2013, 8, e67365.
https://doi.org/10.1371/journal.pone.0067365

[37]. Engelhardt, L. M.; Patrick, J. M.; White, A. H. Crystal Structures of Bis(pyrrolidinedithiocarbamato)-nickel(II) and -copper(II) (Redeter-minations). Aust. J. Chem. 1985, 38, 1413-1416.
https://doi.org/10.1071/CH9851413

[38]. Batsanov, A. S.; Howard, J. A. K. trans-Dichlorobis(triphenyl phos-phine)nickel(II) bis(dichloromethane) solvate: redetermination at 120 K. Acta Crystallogr. Sect. E Struct. Rep. Online 2001, 57, m308-m309.
https://doi.org/10.1107/S1600536801008741

[39]. Brammer, L.; Stevens, E. D. Structure of dichlorobis(triphenyl phosphine)nickel(II). Acta Crystallogr. C 1989, 45, 400-403.
https://doi.org/10.1107/S0108270188011692

[40]. Cao, R.; Li, X.; Sun, H. Synthesis and properties of nickel(II) complexes containing trimethylphosphine and thiophenolato-ligands. Z. Anorg. Allg. Chem. 2007, 633, 2305-2309.
https://doi.org/10.1002/zaac.200700205

[41]. Ramalingam, K.; Aravamudan, G.; Seshasayee, M.; Verghese, B. Structure of bis(monothiobenzoato-S)[ethylenebis(diphenylphos phino)] nickel(II). Acta Crystallogr. C 1987, 43, 471-473.
https://doi.org/10.1107/S0108270187095349

[42]. Milburn, G. H. W.; Truter, M. R. The crystal structures of cis- and trans-dichlorodiammineplatinum(II). J. Chem. Soc. 1966, 1609-1616.
https://doi.org/10.1039/j19660001609

[43]. Brown, I. D. The bond valence model as a tool for teaching inorganic chemistry: The ionic model revisited. J. Chem. Educ. 2000, 77, 1070.
https://doi.org/10.1021/ed077p1070

[44]. Brese, N. E.; O'Keeffe, M. Bond-valence parameters for solids. Acta Crystallogr. B 1991, 47, 192-197.
https://doi.org/10.1107/S0108768190011041

[45]. O'Keefe, M.; Brese, N. E. Atom sizes and bond lengths in molecules and crystals. J. Am. Chem. Soc. 1991, 113, 3226-3229.
https://doi.org/10.1021/ja00009a002

[46]. Liu, W.; Thorp, H. H. Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. 2. Refined distances and other enzymes. Inorg. Chem. 1993, 32, 4102-4105.
https://doi.org/10.1021/ic00071a023

[47]. Ok, K. M.; Halasyamani, P. S.; Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. Distortions in octahedrally coordinated d0 transition metal oxides: A continuous symmetry measures approach. Chem. Mater. 2006, 18, 3176-3183.
https://doi.org/10.1021/cm0604817

[48]. Alvarez, S.; Avnir, D.; Llunell, M.; Pinsky, M. Continuous symmetry maps and shape classification. The case of six-coordinated metal compounds Electronic supplementary information (ESI) available: tables of CSD refcodes, structural parameters and symmetry measures for the studied compounds. See http://www.rsc.org/suppdata/ nj/b2/b202096n/. New J. Chem. 2002, 26, 996-1009.
https://doi.org/10.1039/b200641n

[49]. Zabrodsky, H.; Peleg, S.; Avnir, D. Continuous symmetry measures. J. Am. Chem. Soc. 1992, 114, 7843-7851.
https://doi.org/10.1021/ja00046a033

Supporting Agencies

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).