European Journal of Chemistry 2022, 13(2), 241-252 | doi: | Get rights and content

Issue cover



Synthesis, reactions, and applications of chalcones: A review

Nesrin Mahmoud Morsy (1,*) orcid , Ashraf Sayed Hassan (2) orcid

(1) Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Dokki 12622, Egypt
(2) Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Dokki 12622, Egypt
(*) Corresponding Author

Received: 07 Mar 2022 | Revised: 19 Apr 2022 | Accepted: 26 Apr 2022 | Published: 30 Jun 2022 | Issue Date: June 2022


Considering the essential biological and medicinal properties of chalcones, the synthesis of these compounds has attracted the interest of medicinal and organic chemists. This review aims to describe the different strategies developed so far for the synthesis of chalcones and their applications. After a brief introduction of the chalcones and their biological activities, different synthetic approaches such as chemical and other methods are described and organized on the basis of the catalysts and the other reagents employed in the syntheses. Some of the reactions have been applied successfully to the synthesis of biologically important compounds. Moreover, the biological and pharmacological activities of chalcones have been shown.


Synthesis; Reactions; Chalcones; Applications; Chemical method; Biological activity

Full Text:

PDF    Open Access

DOI: 10.5155/eurjchem.13.2.241-252.2245

Links for Article

| | | | | | |

| | | | | | |

| | | |

Related Articles

Article Metrics

icon graph This Abstract was viewed 230 times | icon graph PDF Article downloaded 93 times


[1]. Kostanecki, S.; Tambor, J. Ueber die sechs isomeren Monooxy benzalacetophenone (Monooxychalkone). Ber. Dtsch. Chem. Ges. 1899, 32, 1921-1926.

[2]. Rupe, H.; Wasserzug, D. Notizen über chromophore gruppirungen. Ber. Dtsch. Chem. Ges. 1901, 34, 3527-3531.

[3]. Rammohan, A.; Reddy, J. S.; Sravya, G.; Rao, C. N.; Zyryanov, G. V. Chalcone synthesis, properties and medicinal applications: a review. Environ. Chem. Lett. 2020, 18, 433-458.

[4]. Ahmad, M. R.; Khan, M. H. R.; Sastry, V. G.; Bano, N.; Anwar, S.; Prasad, Y. R. A comparative study on synthesis of some novel α,β-unsaturated carbonyl derivatives and their antioxidant potential. Eur. J. Chem. 2012, 3, 186-190.

[5]. Nielsen, S. F.; Boesen, T.; Larsen, M.; Schønning, K.; Kromann, H. Antibacterial chalcones--bioisosteric replacement of the 4'-hydroxy group. Bioorg. Med. Chem. 2004, 12, 3047-3054.

[6]. Pedersen, A. K.; FitzGerald, G. A. Preparation and analysis of deuterium-labeled aspirin: application to pharmacokinetic studies. J. Pharm. Sci. 1985, 74, 188-192.

[7]. Shelke, S. N.; Dalvi, N. R.; Gill, C. H.; Karale, B. K. Synthesis of Various Heterocycles from 3-(Naphthylene-3-yl)-1H-pyrazol-4-carbaldehyde. Asian J. Chem. 2007, 19 (7), 5068-5074.

[8]. Xu, H. X.; Wan, M.; Dong, H.; But, P. P.; Foo, L. Y. Inhibitory activity of flavonoids and tannins against HIV-1 protease. Biol. Pharm. Bull. 2000, 23, 1072-1076.

[9]. Bugata, B. K.; Dowluru, S. V. G. K.; Avupati, V. R.; Gavalapu, V. R.; Nori, D. L. S.; Barla, S. Synthesis, characterization and in vitro biological evaluation of some new diarylsulfonylurea-chalcone hybrids as potential 5-lipoxygenase inhibitors. Eur. J. Chem. 2013, 4, 396-401.

[10]. Karthikeyan, C.; Moorthy, N. S. H. N.; Ramasamy, S.; Vanam, U.; Manivannan, E.; Karunagaran, D.; Trivedi, P. Advances in chalcones with anticancer activities. Recent Pat. Anticancer Drug Discov. 2015, 10, 97-115.

[11]. Eldeeb, M.; Sanad, E. F.; Ragab, A.; Ammar, Y. A.; Mahmoud, K.; Ali, M. M.; Hamdy, N. M. Anticancer effects with molecular docking confirmation of newly synthesized isatin sulfonamide molecular hybrid derivatives against hepatic cancer cell lines. Biomedicines 2022, 10, 722.

[12]. El-Sharief, A. M. S.; Ammar, Y. A.; Belal, A.; El-Sharief, M. A. M. S.; Mohamed, Y. A.; Mehany, A. B. M.; Elhag Ali, G. A. M.; Ragab, A. Design, synthesis, molecular docking and biological activity evaluation of some novel indole derivatives as potent anticancer active agents and apoptosis inducers. Bioorg. Chem. 2019, 85, 399-412.

[13]. Hassan, A. S.; Hafez, T. S.; Ali, M. M.; Khatab, T. K. Research journal of pharmaceutical, biological and chemical sciences design, synthesis and cytotoxic activity of some new pyrazolines bearing benzofuran and pyrazole moieties. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 417-429.[60].pdf (accessed April 10, 2022).

[14]. Li, R.; Kenyon, G. L.; Cohen, F. E.; Chen, X.; Gong, B.; Dominguez, J. N.; Davidson, E.; Kurzban, G.; Miller, R. E.; Nuzum, E. O. In vitro antimalarial activity of chalcones and their derivatives. J. Med. Chem. 1995, 38, 5031-5037.

[15]. Dhiyaaldeen, S. M.; Amin, Z. A.; Darvish, P. H.; Mustafa, I. F.; Jamil, M. M.; Rouhollahi, E.; Abdulla, M. A. Protective effects of (1-(4-hydroxy-phenyl)-3-m-tolyl-propenone chalcone in indomethacin-induced gastric erosive damage in rats. BMC Vet. Res. 2014, 10, 961.

[16]. Zhai, L.; Chen, M.; Blom, J.; Theander, T. G.; Christensen, S. B.; Kharazmi, A. The antileishmanial activity of novel oxygenated chalcones and their mechanism of action. J. Antimicrob. Chemother. 1999, 43, 793-803.

[17]. Jayappa, M. K. D.; Akhileshwari, P.; Sridhar, M. A.; Nagarajappa, L. T.; Nagaraju, S.; Raghavendra, S.; Jayappa, M. D. Synthesis and detailed characterization of a newly synthesized chalcone, 3-(2,5-dimethoxy phenyl)-1-(naphthalen-2-yl)prop-2-en-1-one. Eur. J. Chem. 2021, 12, 69-76.

[18]. Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 2017, 117, 7762-7810.

[19]. Rath, H. P.; Saus, A.; Dederichs, B. Photochemisch initiierte Telomeri sation von Äthylen mit Formamid. Z. Naturorsch. 1975, 30B, 740-747. (accessed April 10, 2022).

[20]. DuBois, G. E.; Crosby, G. A.; Stephenson, R. A. Dihydrochalcone sweeteners. A study of the atypical temporal phenomena. J. Med. Chem. 1981, 24, 408-428.

[21]. Jaiswal, S.; Diwedi, S. One-pot synthesis of chalcone derivatives by using anhydrous AlCl3 as condensing agents. Int. J. Eng. Res. Generic Sci. 2016, 4, 204-209 (accessed April 10, 2022).

[22]. Gupta, U.; Mahajan, S.; Singh, V. K.; Khajuria, Y. Computational studies on the molecular structure, vibrational spectra, natural bond orbital, molecular electrostatic potential and UV-Vis analyses of (E)-3-(4-bromophenyl)-1-(3,4-dichlorophenyl)prop-2-en-1-one. Mater. Focus 2014, 3, 421-430.

[23]. Baeyens, P.; Krijl, G. Philips formaldehyde bright tin. Trans. Inst. Met. Finish. 1967, 45, 115-121.

[24]. Hassan, A. S.; Morsy, N. M.; Awad, H. M.; Ragab, A. Synthesis, molecular docking, and in silico ADME prediction of some fused pyrazolo[1,5-a]pyrimidine and pyrazole derivatives as potential antimicrobial agents. J. Iran. Chem. Soc. 2022, 19, 521-545.

[25]. Ali, S.; H.I. Faraag, A.; Elgiushy, H.; Said, T.; Askar, A.; Hassan, A.; Abouzid, K.; Fouad, S. Synthesis, in silico and in vitro antimicrobial evaluation of cyanoketene S,N-acetals and their pyrazoles against staphylococcus aureus DNA gyrase enzyme. J. Adv. Pharm. Res. 2021, 5, 341-361.

[26]. Hassan, A. S.; Moustafa, G. O.; Awad, H. M.; Nossier, E. S.; Mady, M. F. Design, synthesis, anticancer evaluation, enzymatic assays, and a molecular modeling study of novel pyrazole-indole hybrids. ACS Omega 2021, 6, 12361-12374.

[27]. Morsy, N. M.; Hassan, A. S.; Hafez, T. S.; Mahran, M. R. H.; Sadawe, I. A.; Gbaj, A. M. Synthesis, antitumor activity, enzyme assay, DNA binding and molecular docking of Bis-Schiff bases of pyrazoles. J. Iran. Chem. Soc. 2021, 18, 47-59.

[28]. Hassan, A. S.; Moustafa, G. O.; Morsy, N. M.; Abdou, A. M.; Hafez, T. S. Design, synthesis and antibacterial activity of N-aryl-3-(arylamino)-5-(((5-substituted furan-2-yl)methylene)amino)-1H-pyrazole-4-carbox amide as Nitrofurantoin® analogues. Egypt. J. Chem. 2020, 35, 185-196.

[29]. Hassan, A. S. Mixed isatin with 3-(2-(aryl)hydrazono)acetylacetone Mn(II), Co(II) and Ni(II) complexes: antibacterial evaluation and molecular properties prediction. Bull. Chem. Soc. Ethiop. 2021, 34, 533-541.

[30]. Hassan, A. S.; Askar, A. A.; Naglah, A. M.; Almehizia, A. A.; Ragab, A. Discovery of new Schiff bases tethered pyrazole moiety: Design, synthesis, biological evaluation, and molecular docking study as dual targeting DHFR/DNA gyrase inhibitors with immunomodulatory activity. Molecules 2020, 25, 2593.

[31]. Mohamed, A. S. H.; Mohamed, N. M. M.; Hafez, S. M. Preparation and evaluation of new pyrazolo[1,5a]pyrimidine derivatives; Scholars' Press, 2020.

[32]. Naglah, A. M.; Askar, A. A.; Hassan, A. S.; Khatab, T. K.; Al-Omar, M. A.; Bhat, M. A. Biological evaluation and molecular docking with in silico physicochemical, pharmacokinetic and toxicity prediction of pyrazolo[1,5-a]pyrimidines. Molecules 2020, 25, 1431.

[33]. Al-Wasidi, A. S.; Hassan, A. S.; Naglah, A. M. In vitro cytotoxicity and druglikeness of pyrazolines and pyridines bearing benzofuran moiety. J. Appl. Pharm. Sci. 2020, 10, 142-148.

[34]. Elsherif, M. A.; Hassan, A. S.; Moustafa, G. O.; Awad, H. M.; Morsy, N. M. Antimicrobial evaluation and molecular properties prediction of pyrazolines incorporating benzofuran and pyrazole moieties. J. Appl. Pharm. Sci. 2020, 10, 37-43.

[35]. Hassan, A. S.; Askar, A. A.; Nossier, E. S.; Naglah, A. M.; Moustafa, G. O.; Al-Omar, M. A. Antibacterial evaluation, in silico characters and molecular docking of Schiff bases derived from 5-aminopyrazoles. Molecules 2019, 24, 3130.

[36]. Khatab, T.; S. Hassan, A.; S. Hassan, A.; S. Hafez, T.; S. Hafez, T. V2O5/SiO2 as an efficient catalyst in the synthesis of 5-amino- pyrazole derivatives under solvent free condition. Bull. Chem. Soc. Ethiop. 2019, 33, 135-142.

[37]. Elgiushy, H.; Hammad, S.; Hassan, A.; Aboutaleb, N.; Abouzid, K. Acrylamide moiety, a valuable fragment in medicinal chemistry: Insight into synthetic methodologies, chemical reactivity and spectrum of biological activities of acrylamide derivatives. J. Adv. Pharm. Res. 2018, 2, 221-237.

[38]. El-Naggar, M.; Hassan, A. S.; Awad, H. M.; Mady, M. F. Design, synthesis and antitumor evaluation of novel pyrazolopyrimidines and pyrazoloquinazolines. Molecules 2018, 23, 1249.

[39]. Hassan, A. S.; Awad, H. M.; Magd-El-Din, A. A.; Hafez, T. S. Synthesis and in vitro antitumor evaluation of novel Schiff bases. Med. Chem. Res. 2018, 27, 915-927.

[40]. Hassan, A. S.; Hafez, T. S. Antimicrobial activities of ferrocenyl complexes: A review. J. Appl. Pharm. Sci. 2018, 156-165.

[41]. Magd-El-Din, A. A.; Mousa, H. A.; Labib, A. A.; Hassan, A. S.; Abd El-All, A. S.; Ali, M. M.; El-Rashedy, A. A.; El-Desoky, A. H. Benzimidazole - Schiff bases and their complexes: synthesis, anticancer activity and molecular modeling as Aurora kinase inhibitor. Z. Naturforsch. C 2018, 73, 465-478.

[42]. Hassan, A. S.; Moustafa, G. O.; Askar, A. A.; Naglah, A. M.; Al-Omar, M. A. Synthesis and antibacterial evaluation of fused pyrazoles and Schiff bases. Synth. Commun. 2018, 48, 2761-2772.

[43]. Hassan, A. S.; Moustafa, G. O.; Awad, H. M. Synthesis and in vitro anticancer activity of pyrazolo[1,5-a]pyrimidines and pyrazolo[3,4-d][1,2,3]triazines. Synth. Commun. 2017, 47, 1963-1972.

[44]. Hassan, A. S.; Masoud, D. M.; Sroor, F. M.; Askar, A. A. Synthesis and biological evaluation of pyrazolo[1,5-a]pyrimidine-3-carboxamide as antimicrobial agents. Med. Chem. Res. 2017, 26, 2909-2919.

[45]. Hassan, A. S. Antimicrobial evaluation, in silico ADMET prediction, molecular docking, and molecular electrostatic potential of pyrazole-isatin and pyrazole-indole hybrid molecules. J. Iran. Chem. Soc. 2022. (accessed April 10, 2022).

[46]. Elgiushy, H. R.; Mohamed, S. H.; Taha, H.; Sawaf, H.; Hassan, Z.; Abou-Taleb, N. A.; El-Labbad, E. M.; Hassan, A. S.; Abouzid, K. A. M.; Hammad, S. F. Identification of a promising hit from a new series of pyrazolo[1,5-a]pyrimidine based compounds as a potential anticancer agent with potent CDK1 inhibitory and pro-apoptotic properties through a multistep in vitro assessment. Bioorg. Chem. 2022, 120, 105646.

[47]. Hassan, A. S.; Osman, S. A.; Hafez, T. S. 5-Phenyl-2-furaldehyde: Synthesis, Reactions and Biological Activities. Egypt. J. Chem. 2015, 58, 113-139.

[48]. Hassan, A. S.; Hafez, T. S.; Osman, S. A. M.; Ali, M. M. Synthesis and in vitro cytotoxic activity of novel pyrazolo[1,5-a]pyrimidines and related Schiff bases. Turk. J. Chem. 2015, 39, 1102-1113.

[49]. Osman, S., A.; Mousa, H., A.; Abdallah, Y., Hisham; Hafez, T., S.; El-Sawy, A., A.; Abdallah, M., M.; Hassan, A., S. Synthesis, characterization and cytotoxicity of mixed ligand Mn(II), Co(II) and Ni(II) complexes. J. Serb. Chem. Soc. 2014, 79, 953-964.

[50]. Hafez, T. S.; Osman, S. A.; Yosef, H. A. A.; El-All, A. S. A.; Hassan, A. S.; El-Sawy, A. A.; Abdallah, M. M.; Youns, M. Synthesis, structural elucidation, and in vitro antitumor activities of some pyrazolo pyrimidines and Schiff bases derived from 5-amino-3-(arylamino)-1H-pyrazole-4-carboxamides. Sci. Pharm. 2013, 81, 339-357.

[51]. Elgemeie, G. H.; Elsayed, S. H.; Hassan, A. S. Design and synthesis of the first thiophene thioglycosides. Synth. Commun. 2009, 39, 1781-1792.

[52]. Elgemeie, G. H.; Elsayed, S. H.; Hassan, A. S. Direct route to a new class of acrylamide thioglycosides and their conversions to pyrazole derivatives. Synth. Commun. 2008, 38, 2700-2706.

[53]. Yosef, H. A. A.; Morsy, N. M.; Mahran, M. R. H.; Aboul-Enein, H. Y. Preparation and reactions of optically active cyanohydrins using the (R)-hydroxynitrile lyase from Prunus amygdalus. J. Iran. Chem. Soc. 2007, 4, 46-58.

[54]. Elkanzi, N. A. A.; Yosef, H. A. A. E.-M.; Mohamed, N. M. M. Synthesis of some new spirocyclic β-lactam and spirocyclic thiazolidin-4-one derivatives. Eur. J. Chem. 2013, 4, 195-202.

[55]. Elkanzi, N. A. A.; Morsy, N. M.; Aly, A. A.; Brown, A. B.; Ramadan, M. New pyrimidine-2-thiones from reactions of amidrazonethiols with 2-amino-1,1,2-ethenetricarbonitrile and investigation of their antitumor activity: New pyrimidin-2-thiones from reactions of amidrazonethiols with 2-amino-1,1,2-ethenetricarbonitrile and investigation of their antitumor activity. J. Heterocycl. Chem. 2016, 53, 1838-1842.

[56]. Elkanzi, N. A. A.; Aly, A. A.; Shawky, A. M.; El-Sheref, E. M.; Morsy, N. M.; El-Reedy, A. A. M. Amination of malononitrile dimer to amidines: Synthesis of 6-aminopyrimidines: Malononitrile dimer, amidines, amination, pyrimidines. J. Heterocycl. Chem. 2016, 53, 1941-1944.

[57]. Yosef, H. A. A.; Morsy, N. M.; Mahran, M. R. H.; Shaker, N. O. Chemistry of Optically Active Cyanohydrins-Part 3:[1] Preparation and Reactions of (R)-2-Hydroxy-2-(naphthalen-1-yl)ethane- nitrile using (R)-Hydroxynitrile lyase from Prunus amygdalus. Antitumor and Antimicrobial Evaluation of the New Products. Egypt. J. Chem. 2014, 57, 387-410.

[58]. Aly, A. A.; Ramadan, M.; Morsy, N. M.; Elkanzi, N. A. A. Inclusion of Carbonyl Groups of Benzo[ b ]thiophene‐2,5‐dione into Amidrazones: Synthesis of 1,2,4‐triazine‐5,6‐diones: Benzo[b]thiophene-2,5-dione into Amidrazones. J. Heterocycl. Chem. 2017, 54, 2067-2070.

[59]. El Sayed, M. T.; El-Sharief, M. A. M. S.; Zarie, E. S.; Morsy, N. M.; Elsheakh, A. R.; Nayel, M.; Voronkov, A.; Berishvili, V.; Sabry, N. M.; Hassan, G. S.; Abdel-Aziz, H. A. Design, synthesis, anti-inflammatory antitumor activities, molecular modeling and molecular dynamics simulations of potential naprosyn® analogs as COX-1 and/or COX-2 inhibitors. Bioorg. Chem. 2018, 76, 188-201.

[60]. El Sayed, M. T.; El-Sharief, M. A. M. S.; Zarie, E. S.; Morsy, N. M.; Elsheakh, A. R.; Voronkov, A.; Berishvili, V.; Hassan, G. S. Design, synthesis, anti-inflammatory activity and molecular docking of potential novel antipyrine and pyrazolone analogs as cyclooxygenase enzyme (COX) inhibitors. Bioorg. Med. Chem. Lett. 2018, 28, 952-957.

[61]. Ghoneim, A. A.; Morsy, N. M. Synthesis and structure elucidation of some new azo dye from hydroxyquinolin-2(1H)-one derivatives and their antimicrobial evaluation. J. Iran. Chem. Soc. 2018, 15, 2567-2572.

[62]. Abdelwahab, A. H. F.; Fekry, S. A. H. Synthesis, reactions and applications of naphthofurans: A review. Eur. J. Chem. 2021, 12, 340-359.

[63]. Sunagar, V. A.; Latthe, P. R.; Badami, B. V. Azopyrazolobenzylidene derivatives of 4-amino-1,2,4-triazol-3-ones. Synthesis of 4-[4-(3,5-dimethyl-1H-pyrazol-4-yl)diazenyl]-benzylideneamino-2-aryl-5-methyl-3H-[1,2,4]-triazol-3-ones. J. Heterocycl. Chem. 2007, 44, 1-6.

[64]. Jha, A.; Mukherjee, C.; Prasad, A. K.; Parmar, V. S.; Clercq, E. D.; Balzarini, J.; Stables, J. P.; Manavathu, E. K.; Shrivastav, A.; Sharma, R. K.; Nienaber, K. H.; Zello, G. A.; Dimmock, J. R. E,E,E-1-(4-Arylamino-4-oxo-2-butenoyl)-3,5-bis(arylidene)-4-piperidones: a topographical study of some novel potent cytotoxins. Bioorg. Med. Chem. 2007, 15, 5854-5865.

[65]. Mamedov, V. A. Quinoxalines: Synthesis, reactions, mechanisms and structure; 1st ed.; Springer International Publishing: Cham, Switzerland, 2016.

[66]. Łużny, M.; Krzywda, M.; Kozłowska, E.; Kostrzewa-Susłow, E.; Janeczko, T. Effective Hydrogenation of 3-(2"-furyl)- and 3-(2"-thienyl)-1-(2'-hydroxyphenyl)-prop-2-en-1-one in Selected Yeast Cultures. Molecules 2019, 24, 3185.

[67]. Kiran, K.; Ashok, D.; Rao, B., Ananda; Sarasija, M.; Rao, A., Srinivas Synthesis of novel pyrazoline based bis (1,2,3-triazole) scaffolds via click chemistry. J. Serb. Chem. Soc. 2017, 82, 241-251.

[68]. Jaiswal, P.; Pal Pathak, D.; Bansal, H.; Agarwal, U. Chalcone and their Heterocyclic Analogue: A Review Article. J. Chem. Pharm. Res. 2018, 10, 160-173. cyclic-analogue-a-review-article.pdf (accessed April 10, 2022).

[69]. Burmaoglu, S.; Ozcan, S.; Balcioglu, S.; Gencel, M.; Noma, S. A. A.; Essiz, S.; Ates, B.; Algul, O. Synthesis, biological evaluation and molecular docking studies of bis-chalcone derivatives as xanthine oxidase inhibitors and anticancer agents. Bioorg. Chem. 2019, 91, 103149.

[70]. Gaonkar, S. L.; Vignesh, U. N. Synthesis and pharmacological properties of chalcones: a review. Res. chem. intermed. 2017, 43, 6043-6077.

[71]. Bestmann, H. J.; Arnason, B. Reaktionen mit Phosphin‐alkylenen, II. C ‐Acylierung von Phosphin‐alkylenen. Ein neuer Weg zur Synthese von Ketonen. Chem. Ber. 1962, 95, 1513-1527.

[72]. Wadsworth, W. S.; Emmons, W. D. The utility of phosphonate carbanions in olefin synthesis. J. Am. Chem. Soc. 1961, 83, 1733-1738.

[73]. Trippett, S.; Walker, D. M. 246. The phosphobetaines: preparation and properties. J. Chem. Soc. 1961, 1266-1272.

[74]. Abe, I.; Sano, Y.; Takahashi, Y.; Noguchi, H. Site-directed Mutagenesis of benzalacetone synthase: The role of phe215in plant type iii polyketide synthases. J. Biol. Chem. 2003, 278, 25218-25226.

[75]. Mistry, R. N.; Desai, K. R. Microwave Studies on Synthesis of Some New Heterocyclic Chalcone and Pyrimidine-2-thione Derivatives and Their Antibacterial Activity. Asian J. Chem. 2004, 16, 201-206. http:/// (accessed April 10, 2022).

[76]. Perozo-Rondón, E.; Martín-Aranda, R. M.; Casal, B.; Durán-Valle, C. J.; Lau, W. N.; Zhang, X. F.; Yeung, K. L. Sonocatalysis in solvent free conditions: An efficient eco-friendly methodology to prepare chalcones using a new type of amino grafted zeolites. Catal. Today 2006, 114, 183-187.

[77]. Chen, X.; Liu, B.-K.; Kang, H.; Lin, X.-F. A tandem Aldol condensation /dehydration co-catalyzed by acylase and N-heterocyclic compounds in organic media. J. Mol. Catal. B Enzym. 2011, 68, 71-76.

[78]. Li, J.-T.; Zhang, X.-H.; Lin, Z.-P. An improved synthesis of 1,3,5-triaryl-2-pyrazolines in acetic acid aqueous solution under ultrasound irradiation. Beilstein J. Org. Chem. 2007, 3, 13.

[79]. Yusuf, M.; Jain, P. Synthetic and biological studies of pyrazolines and related heterocyclic compounds. Arab. J. Chem. 2014, 7, 553-596.

[80]. Pathak, V. N.; Joshi, R.; Sharma, J.; Gupta, N.; Rao, V. M. Mild and ecofriendly tandem synthesis, and spectral and antimicrobial studies of N1-acetyl-5-aryl-3-(substituted styryl)pyrazolines. Phosphorus Sulfur Silicon Relat. Elem. 2009, 184, 1854-1865.

[81]. Jadhav, S.; Shastri, R.; Gaikwad, K. Synthesis and antimicrobial studies of some novel pyrazoline and isoxazoline derivatives. E-J. Chem. 2009, 6, S183-S188.

[82]. Al-Kadhimi, A. A. H.; Al-Khayate, A. K.; AL-Dulyme, M. G. Synthesis, characterization of some new heterocycles bearing benzofuran moiety. Res. J. Pharm, Biol. Chem. Sci. 2013, 4, 159-168. http:///[18].pdf (accessed April 10, 2022).

[83]. Fathalla, O. A.; Awad, S. M.; Mohamed, M. S. Synthesis of new 2-thiouracil-5-sulphonamide derivatives with antibacterial and antifungal activity. Arch. Pharm. Res. 2005, 28, 1205-1212.

[84]. Osman, S. A.; Yosef, H. A. A.; Hafez, T. S.; El-Sawy, A. A.; Mousa, H. A.; Hassan, A. S. Synthesis and Antibacterial Activity of Some Novel Chalcones, Pyrazoline and 3-Cyanopyridine Derivatives Based on Khellinone as well as Ni(II), Co(II) and Zn(II) Complexes Aust. J. Basic. Appl. Sci. 2012, 6, 852-863. http:/// (accessed April 10, 2022).

[85]. Modha, J.; Datta, N.; Parekh, H. Synthesis and biological evaluation of some new 3 ,4-dihydropyrimidin-4-ones. Farmaco 2001, 56, 641-646.

[86]. Awadallah, F. M.; Piazza, G. A.; Gary, B. D.; Keeton, A. B.; Canzoneri, J. C. Synthesis of some dihydropyrimidine-based compounds bearing pyrazoline moiety and evaluation of their antiproliferative activity. Eur. J. Med. Chem. 2013, 70, 273-279.

[87]. Bhatia, M. S.; Choudhari, P. B.; Ingale, K. B. Synthesis, Screening and QSAR Studies of 2,4-Disubstituted 1,5-Benzodiazepine Derivatives. Orient. J. Chem. 2008, 24, 147-152. http:/// (accessed April 10, 2022).

[88]. Lévai, A.; Jekő, J. Oxazepines and thiazepines 46. Synthesis of tetracyclic 1,5-benzothiazepines by the reaction of α,β,γ,δ-unsaturated ketones with 2-aminothiophenol. ARKIVOC 2009, 2008, 234-240.

[89]. Prakash, O.; Kumar, A.; Sadana, A.; Prakash, R.; Singh, S. P.; Claramunt, R. M.; Sanz, D.; Alkorta, I.; Elguero, J. Study of the reaction of chalcone analogs of dehydroacetic acid and o-aminothiophenol: synthesis and structure of 1,5-benzothiazepines and 1,4-benzothiazines. Tetrahedron 2005, 61, 6642-6651.

[90]. Patel, R. N.; Nimavat, K. S.; Vyas, K. B.; Patel, P. V. Synthesis on study of 2-methyl-5-nitro-n-(4-(3-(2-aryl-2,3-dihydrobenzo[b][1,4]thiazepin-4-yl)phenoxy)phenyl) benzenesulfonamide and their antimicobial activity. J. Chem. Pharm. Res. 2011, 3, 409-415. phenoxyphenyl-benzenesulfonamide-and-their-anti.pdf (accessed April 10, 2022).

[91]. Cherkupally, S. R.; Gurrala, P. R.; Adki, N.; Avula, S. Synthesis and biological study of novel methylene-bis-benzofuranyl-[1,5]-benzothiazepines. Org. Commun. 2008, 1, 84-94. (accessed April 10, 2022).

[92]. Suwito, H.; Kristanti, A. N.; Nyoman, N.; Puspaningsih, T. Chalcones: Synthesis, structure diversity and pharmacological aspects. J. Chem. Pharm. Res. 2014, 6, 1076-1088. (accessed April 10, 2022).

[93]. Levai, A. Oxazepines and thiazepines 38* synthesis of 2,4-diaryl-2,3-dihydro-l,5-benzothiazepines by the reaction of 2-hydroxychalcones with 2-aminothiophenol. Heterocycl. Comm. 1999, 5, 359-364.

[94]. Ishida, S.; Matsuda, A.; Kawamura, Y.; Yamanaka, K. Antifungal agent. I. Antibacterial and antifungal activities in vitro of several organic compounds. II. Antibacterial and antifungal activities of cinnamaldehyde derivatives. III. Antibacterial and antifungal activities of a-bromocinnamaldehyde derivatives. Chemotherapy Tokyo 1960, 8, 146-159 http:/// (accessed April 10, 2022).

[95]. Chauhan, R.; Dwivedi, J.; Siddiqi Anees, A. A.; Kishore, D. Synthesis and antimicrobial activity of chalcone derivatives of indole nucleus. Pharm. Chem. J. 2011, 44, 542-550.

[96]. Mohamed, M. F.; Hassaneen, H. M.; Abdelhamid, I. A. Cytotoxicity, molecular modeling, cell cycle arrest, and apoptotic induction induced by novel tetrahydro-[1,2,4]triazolo[3,4-a]isoquinoline chalcones. Eur. J. Med. Chem. 2018, 143, 532-541.

[97]. Ducki, S.; Forrest, R.; Hadfield, J. A.; Kendall, A.; Lawrence, N. J.; McGown, A. T.; Rennison, D. Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorg. Med. Chem. Lett. 1998, 8, 1051-1056.

[98]. Yerragunta, V.; Kumaraswamy, T.; Suman, D.; Anusha, V.; Patil, P.; Samhitha, T. A review on Chalcones and its importance. Pharma. Tutor. 2013, 1, 54-59. (accessed April 10, 2022).

[99]. Miranda, C. L.; Stevens, J. F.; Ivanov, V.; McCall, M.; Frei, B.; Deinzer, M. L.; Buhler, D. R. Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. J. Agric. Food Chem. 2000, 48, 3876-3884.

[100]. Domínguez, J. N.; León, C.; Rodrigues, J.; Gamboa de Domínguez, N.; Gut, J.; Rosenthal, P. J. Synthesis and evaluation of new antimalarial phenylurenyl chalcone derivatives. J. Med. Chem. 2005, 48, 3654-3658.

[101]. Tomar, V.; Bhattacharjee, G.; Kamaluddin; Rajakumar, S.; Srivastava, K.; Puri, S. K. Synthesis of new chalcone derivatives containing acridinyl moiety with potential antimalarial activity. Eur. J. Med. Chem. 2010, 45, 745-751.

[102]. Sivakumar, P. M.; Seenivasan, S. P.; Kumar, V.; Doble, M. Synthesis, antimycobacterial activity evaluation, and QSAR studies of chalcone derivatives. Bioorg. Med. Chem. Lett. 2007, 17, 1695-1700.

[103]. Gaur, R.; Yadav, K. S.; Verma, R. K.; Yadav, N. P.; Bhakuni, R. S. In vivo anti-diabetic activity of derivatives of isoliquiritigenin and liquiritigenin. Phytomedicine 2014, 21, 415-422.

How to cite

Morsy, N.; Hassan, A. Eur. J. Chem. 2022, 13(2), 241-252. doi:10.5155/eurjchem.13.2.241-252.2245
Morsy, N.; Hassan, A. Synthesis, reactions, and applications of chalcones: A review. Eur. J. Chem. 2022, 13(2), 241-252. doi:10.5155/eurjchem.13.2.241-252.2245
Morsy, N., & Hassan, A. (2022). Synthesis, reactions, and applications of chalcones: A review. European Journal of Chemistry, 13(2), 241-252. doi:10.5155/eurjchem.13.2.241-252.2245
Morsy, Nesrin, & Ashraf Sayed Hassan. "Synthesis, reactions, and applications of chalcones: A review." European Journal of Chemistry [Online], 13.2 (2022): 241-252. Web. 19 Aug. 2022
Morsy, Nesrin, AND Hassan, Ashraf. "Synthesis, reactions, and applications of chalcones: A review" European Journal of Chemistry [Online], Volume 13 Number 2 (30 June 2022)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item

DOI Link:

CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley

European Journal of Chemistry 2022, 13(2), 241-252 | doi: | Get rights and content


  • There are currently no refbacks.

Copyright (c) 2022 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).

© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.