European Journal of Chemistry 2022, 13(2), 186-195 | doi: | Get rights and content

Issue cover



Molecular dynamics of fibric acids

Chad Miller (1) orcid , Steven Schildcrout (2) orcid , Howard Mettee (3) orcid , Ganesaratnam Balendiran (4,*) orcid

(1) Department of Chemistry, Youngstown State University, Youngstown, OH 44555, U.S.A.
(2) Department of Chemistry, Youngstown State University, Youngstown, OH 44555, U.S.A.
(3) Department of Chemistry, Youngstown State University, Youngstown, OH 44555, U.S.A.
(4) Department of Chemistry, Youngstown State University, Youngstown, OH 44555, U.S.A.
(*) Corresponding Author

Received: 17 Mar 2022 | Revised: 16 Apr 2022 | Accepted: 22 Apr 2022 | Published: 30 Jun 2022 | Issue Date: June 2022


1H- and 13C-NMR chemical shifts were measured for four fibric acids (bezafibrate, clofibric acid, fenofibric acid, and gemfibrozil), which are lipid-lowering drugs. Correlation is found with DFT-computed chemical shifts from the conformational analysis. Equilibrium populations of optimized conformers at 298 K are very different when based on computed Gibbs energies rather than on potential energies. This is due to the significant entropic advantages of extended rather than bent conformational shapes. Abundant conformers with intramolecular hydrogen bonding via five-member rings are computed for three fibric acids, but not gemfibrozil, which lacks suitable connectivity of carboxyl and phenoxy groups. Trends in computed atom-positional deviations, molecular volumes, surface areas, and dipole moments among the fibric acids and their constituent conformations indicate that bezafibrate has the greatest hydrophilicity and fenofibric acid has the greatest flexibility. Theoretical and experimental comparison of chemical shifts of standards with sufficient overlap of fragments containing common atoms, groups, and connectivity may provide a reliable minimal set to benchmark and generate leads.


Computation; Thermochemistry; Molecular Scaffold; Molecular dynamics; Molecular modeling; Conformational analysis

Full Text:

PDF    Open Access

DOI: 10.5155/eurjchem.13.2.186-195.2275

Links for Article

| | | | | | |

| | | | | | |

| | | |

Related Articles

Article Metrics

icon graph This Abstract was viewed 100 times | icon graph PDF Article downloaded 29 times

Funding information

The National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health, USA.


[1]. Gund, P.; Andose, J. D.; Rhodes, J. B.; Smith, G. M. Three-dimensional molecular modeling and drug design. Science 1980, 208, 1425-1431.

[2]. Sicho, M.; Liu, X.; Svozil, D.; van Westen, G. J. P. GenUI: interactive and extensible open source software platform for de novo molecular generation and cheminformatics. J. Cheminform. 2021, 13, 1758-2946.

[3]. Balendiran, G. K.; Balakrishnan, R. In search of aldose reductase inhibitors; Vol. 12, p 276-283, ISBN 9781557533845. Purdue University Press: West Lafayette, IN, 2004. (accessed April 10, 2022)

[4]. Balendiran, G. K.; Balakrishnan, R. Fibrates inhibit aldose reductase activity in the forward and reverse reactions. Biochem. Pharmacol. 2005, 70, 1653-1663.

[5]. Klemin, S.; Calvo, R. Y.; Bond, S.; Dingess, H.; Rajkumar, B.; Perez, R.; Chow, L.; Balendiran, G. K. WY 14,643 inhibits human aldose reductase activity. J. Enzyme Inhib. Med. Chem. 2006, 21, 569-573.

[6]. Balendiran, G.; Verma, M.; Perry, E. Chemistory of fibrates. Curr. Chem. Biol. 2007, 1, 311-316.

[7]. Balendiran, G. K.; Verma, M.; Bharadwaj, S. Lead Optimization in the Design of Aldose Reductase Inhibitors; Vol. 13, p 228-237, ISBN 978-1-55753-447-7. Purdue University Press: West Lafayette, IN, 2007. (accessed April 10, 2022)

[8]. Verma, M.; Martin, H.-J.; Haq, W.; O'Connor, T. R.; Maser, E.; Balendiran, G. K. Inhibiting wild-type and C299S mutant AKR1B10; a homologue of aldose reductase upregulated in cancers. Eur. J. Pharmacol. 2008, 584, 213-221.

[9]. Kong, J.; White, C. A.; Krylov, A. I.; Sherrill, D.; Adamson, R. D.; Furlani, T. R.; Lee, M. S.; Lee, A. M.; Gwaltney, S. R.; Adams, T. R.; Ochsenfeld, C.; Gilbert, A. T. B.; Kedziora, G. S.; Rassolov, V. A.; Maurice, D. R.; Nair, N.; Shao, Y.; Besley, N. A.; Maslen, P. E.; Dombroski, J. P.; Daschel, H.; Zhang, W.; Korambath, P. P.; Baker, J.; Byrd, E. F. C.; Van Voorhis, T.; Oumi, M.; Hirata, S.; Hsu, C.-P.; Ishikawa, N.; Florian, J.; Warshel, A.; Johnson, B. G.; Gill, P. M. W.; Head-Gordon, M.; Pople, J. A. Q-Chem 2.0: a high-performanceab initio electronic structure program package. J. Comput. Chem. 2000, 21, 1532-1548.<1532::AID-JCC10>3.0.CO;2-W

[10]. Spartan'20, version 1.0.0, Wavefunction, Inc., Irvine, CA, 2021. (accessed April 10, 2022).

[11]. Djinović, K.; Globokar, M.; Zupet, P. Structure of bezafibrate (2-p-[2-(p-chlorobenzamide)ethyl]phenoxy-2-methylpropanoic acid). Acta Crystallogr. C 1989, 45, 772-775.

[12]. Rath, N. P.; Haq, W.; Balendiran, G. K. Fenofibric acid. Acta Crystallogr. C 2005, 61, o81-4.

[13]. Bruni, B.; Coran, S.; Di Vaira, M.; Giannellini, V. 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoic acid (gemfibrozil). Acta Crystallogr. Sect. E Struct. Rep. Online 2005, 61, o1989-o1991.

[14]. Balendiran, G. K.; Rath, N.; Kotheimer, A.; Miller, C.; Zeller, M.; Rath, N. P. Biomolecular chemistry of isopropyl fibrates. J. Pharm. Sci. 2012, 101, 1555-1569.

[15]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A. J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01, Gaussian, Inc.: Wallingford CT, 2019.

[16]. Ohio Supercomputer Center. 1987. Columbus OH: Ohio Supercomputer Center. (accessed April 10, 2022).

[17]. Stringfellow, T. C.; C. Farrar, T. NMR chemical shift temperature dependence of isocyanomethane. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1997, 53, 2425-2433.

[18]. Wendt, M. A.; Meiler, J.; Weinhold, F.; Farrar, T. C. Solvent and concentration dependence of the hydroxyl chemical shift of methanol. Mol. Phys. 1998, 93, 145-151.

[19]. Lee, B.; Richards, F. M. The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol. 1971, 55, 379-400.

[20]. Richards, F. M. Areas, volumes, packing and protein structure. Annu. Rev. Biophys. Bioeng. 1977, 6, 151-176.

[21]. Connolly, M. L. Analytical molecular surface calculation. J. Appl. Crystallogr. 1983, 16, 548-558.

[22]. Krarup, L. H.; Christensen, I. T.; Hovgaard, L.; Frokjaer, S. Predicting drug absorption from molecular surface properties based on molecular dynamics simulations. Pharm. Res. 1998, 15, 972-978.

[23]. Clark, D. E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. J. Pharm. Sci. 1999, 88, 807-814.

[24]. TopSpin; Bruker Topspin software package, (RRID:SCR_014227), (accessed April 10, 2022).

[25]. Lim, V. T.; Bayly, C. I.; Fusti-Molnar, L.; Mobley, D. L. Assessing the conformational equilibrium of carboxylic acid via quantum mechanical and molecular dynamics studies on acetic acid. J. Chem. Inf. Model. 2019, 59, 1957-1964.

[26]. Hoff, A.; Rath, N.; Lisko, J.; Zeller, M.; Balendiran, G. K. Signature of Glycylglutamic Acid structure. Int J Biochem Biophys (Alhambra) 2021, 9, 8-15.

[27]. Bryant, R. G. NMR relaxation studies of solute-solvent interactions. Annu. Rev. Phys. Chem. 1978, 29, 167-188.

How to cite

Miller, C.; Schildcrout, S.; Mettee, H.; Balendiran, G. Eur. J. Chem. 2022, 13(2), 186-195. doi:10.5155/eurjchem.13.2.186-195.2275
Miller, C.; Schildcrout, S.; Mettee, H.; Balendiran, G. Molecular dynamics of fibric acids. Eur. J. Chem. 2022, 13(2), 186-195. doi:10.5155/eurjchem.13.2.186-195.2275
Miller, C., Schildcrout, S., Mettee, H., & Balendiran, G. (2022). Molecular dynamics of fibric acids. European Journal of Chemistry, 13(2), 186-195. doi:10.5155/eurjchem.13.2.186-195.2275
Miller, Chad, Steven Schildcrout, Howard Mettee, & Ganesaratnam Balendiran. "Molecular dynamics of fibric acids." European Journal of Chemistry [Online], 13.2 (2022): 186-195. Web. 19 Aug. 2022
Miller, Chad, Schildcrout, Steven, Mettee, Howard, AND Balendiran, Ganesaratnam. "Molecular dynamics of fibric acids" European Journal of Chemistry [Online], Volume 13 Number 2 (30 June 2022)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item

DOI Link:

CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley

European Journal of Chemistry 2022, 13(2), 186-195 | doi: | Get rights and content


  • There are currently no refbacks.

Copyright (c) 2022 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).

© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.