European Journal of Chemistry

Synthesis, characterization, and biological activity of Cu(II), Ni(II), and Zn(II) complexes of a tridentate heterocyclic Schiff base ligand derived from thiosemicarbazide and 2-benzoylpyridine

Crossmark


Main Article Content

Line Edwige Tsakeng Ngoudjou
Awawou Gbambie Paboudam
Adrien Pamen Yepseu
Maurice Kuate
Giscard Doungmo
Peter Teke Ndifon

Abstract

Ni(II), Cu(II), and Zn(II) complexes of the tridentate heterocyclic ligand, 2-(phenyl(pyridin-2-yl)methylene)hydrazine-1-carbothioamide (HL) have been synthesized and characterized by various spectroscopic techniques and elemental analyses. Infrared spectroscopy shows that the ligand coordinates to the metal ions through the azomethine and pyridine nitrogen atoms as well as the sulfur atom of the thioamide group to form a tridentate chelate system. In vitro screening of metal complexes against four bacterial strains (Staphylococcus aureus (ATCC 43300), Klebsiella pneumoniae (ATCC 700603), Methicillin resistant staphylococcus aureus (ATCC 33591), Shigella flexneri (NR 518)) and four fungal strains (Candida albicans (NR 29444), Candida albicans (NR 29445), Candida albicans (NR 29451), Candida krusei (HM 1122)) indicate that the Cu(II) complex showed good antibacterial activity on Methicillin resistant staphylococcus aureus (ATCC 33591) while the Zn(II) complex showed moderate activity against some of the bacterial and fungi strains. Antioxidant studies reveal that the complexes are more potent than the ligand to eliminate free radicals, with the Ni(II) complex showing the best free radical scavenger.


icon graph This Abstract was viewed 1461 times | icon graph Article PDF downloaded 483 times

How to Cite
(1)
Ngoudjou, L. E. T.; Paboudam, A. G.; Yepseu, A. P.; Kuate, M.; Doungmo, G.; Ndifon, P. T. Synthesis, Characterization, and Biological Activity of Cu(II), Ni(II), and Zn(II) Complexes of a Tridentate Heterocyclic Schiff Base Ligand Derived from Thiosemicarbazide and 2-Benzoylpyridine. Eur. J. Chem. 2022, 13, 299-306.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Sharma, R.; Agarwal, S. K.; Rawat, S.; Nagar, M. Synthesis, characterization and antibacterial activity of some transition metal cis-3,7-dimethyl-2,6-octadiensemicarbazone complexes. Transit. Met. Chem. 2006, 31, 201-206.
https://doi.org/10.1007/s11243-005-6374-3

[2]. Li, M. X.; Chen, C. L.; Zhang, D.; Niu, J. Y.; Ji, B. S. Mn(II), Co(II) and Zn(II) complexes with heterocyclic substituted thiosemicarbazones: synthesis, characterization, X-ray crystal structures and antitumor comparison. Eur. J. Med. Chem. 2010, 45, 3169-3177.
https://doi.org/10.1016/j.ejmech.2010.04.009

[3]. Malik, M. A.; Dar, O. A.; Gull, P.; Wani, M. Y.; Hashmi, A. A. Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. Medchemcomm 2018, 9, 409-436.
https://doi.org/10.1039/C7MD00526A

[4]. Abdel-Rahman, L. H.; Ismail, N. M.; Ismael, M.; Abu-Dief, A. M.; Ahmed, E. A.-H. Synthesis, characterization, DFT calculations and biological studies of Mn(II), Fe(II), Co(II) and Cd(II) complexes based on a tetradentate ONNO donor Schiff base ligand. J. Mol. Struct. 2017, 1134, 851-862.
https://doi.org/10.1016/j.molstruc.2017.01.036

[5]. Sankaraperumal, A.; Karthikeyan, J.; Shetty, A. N.; Lakshmisundaram, R. Nickel(II) complex of p-[N,N-bis(2-chloroethyl)amino] benzal-dehyde-4-methyl thiosemicarbazone: Synthesis, structural charac-terization and biological application. Polyhedron 2013, 50, 264-269.
https://doi.org/10.1016/j.poly.2012.11.006

[6]. Sönmez, M.; Levent, A.; Şekerci, M. Synthesis, characterization, and thermal investigation of some metal complexes containing polydentate ONO-donor heterocyclic Schiff base ligand. Russ. J. Coord. Chem. 2004, 30, 655-660.
https://doi.org/10.1023/B:RUCO.0000040726.57728.a3

[7]. Prashanthi, Y.; Kiranmai, K.; Ira; K, S. K.; Chityala, V. K.; Shivaraj Spectroscopic characterization and biological activity of mixed ligand complexes of Ni(II) with 1,10-phenanthroline and heterocyclic Schiff bases. Bioinorg. Chem. Appl. 2012, 2012, 948534.
https://doi.org/10.1155/2012/948534

[8]. Alomar, K.; Landreau, A.; Kempf, M.; Khan, M. A.; Allain, M.; Bouet, G. Synthesis, crystal structure, characterization of zinc(II), cadmium(II) complexes with 3-thiophene aldehyde thiosemicarbazone (3TTSCH). Biological activities of 3TTSCH and its complexes. J. Inorg. Biochem. 2010, 104, 397-404.
https://doi.org/10.1016/j.jinorgbio.2009.11.012

[9]. Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417-433.
https://doi.org/10.1128/MMBR.00016-10

[10]. Basu, A.; Thiyagarajan, D.; Kar, C.; Ramesh, A.; Das, G. Synthesis, crystal structure and bio-macromolecular interaction studies of pyridine-based thiosemicarbazone and its Ni(II) and Cu(II) complexes. RSC Adv. 2013, 3, 14088-14098.
https://doi.org/10.1039/c3ra40904j

[11]. Hussein, M. A.; Iqbal, M. A.; Umar, M. I.; Haque, R. A.; Guan, T. S. Synthesis, structural elucidation and cytotoxicity of new thiosemicarbazone derivatives. Arab. J. Chem. 2019, 12, 3183-3192.
https://doi.org/10.1016/j.arabjc.2015.08.013

[12]. Raja, D. S.; Paramaguru, G.; Bhuvanesh, N. S. P.; Reibenspies, J. H.; Renganathan, R.; Natarajan, K. Effect of terminal N-substitution in 2-oxo-1,2-dihydroquinoline-3-carbaldehyde thiosemicarbazones on the mode of coordination, structure, interaction with protein, radical scavenging and cytotoxic activity of copper(II) complexes. Dalton Trans. 2011, 40, 4548-4559.
https://doi.org/10.1039/c0dt01657h

[13]. Kuate, M.; Conde, M. A.; Ngandung Mainsah, E.; Paboudam, A. G.; Tchieno, F. M. M.; Ketchemen, K. I. Y.; Tonle Kenfack, I.; Ndifon, P. T. Synthesis, characterization, cyclic voltammetry, and biological studies of Co(II), Ni(II), and Cu(II) complexes of a tridentate Schiff base, 1-((E)-(2-mercaptophenylimino) methyl) naphthalen-2-ol (H2L1). J. Chem. 2020, 2020, 1-21.
https://doi.org/10.1155/2020/5238501

[14]. Costa, R. F. F.; Rebolledo, A. P.; Matencio, T.; Calado, H. D. R.; Ardisson, J. D.; Cortés, M. E.; Rodrigues, B. L.; Beraldo, H. Metal complexes of 2-benzoylpyridine-derived thiosemicarbazones: structural, electro chemical and biological studies. J. Coord. Chem. 2005, 58, 1307-1319.
https://doi.org/10.1080/00958970500213307

[15]. Tiwari, D.; Basnet, K.; Lamichhane, J.; Niraula, P.; Bhandari, S.; Yadav, P. N. Copper complexes of imidazole-2-carbaldehyde N(4)-substituted thiosemicarbazones: Synthesis, characterization and antimicrobial activity. Asian J. Chem. 2016, 28, 2793-2797.
https://doi.org/10.14233/ajchem.2016.20127

[16]. Ejidike, I. P.; Ajibade, P. A. Synthesis, characterization and biological studies of metal(II) complexes of (3E)-3-[(2-{(E)-[1-(2,4-dihydroxy phenyl) ethylidene]amino}ethyl)imino]-1-phenylbutan-1-one Schiff base. Molecules 2015, 20, 9788-9802.
https://doi.org/10.3390/molecules20069788

[17]. Mainsah, E. N.; Ndifon, P. T.; Nfor, E. N.; Njapba, J. N. Synthesis, characterization and antibacterial properties of some transition metal complexes of (1H-pyrrol-2-yl)-isonicotinoylhydrazone. Bull. Chem. Soc. Ethiop. 2013, 27, 395-404.
https://doi.org/10.4314/bcse.v27i3.8

[18]. N. Mainsah, E.; E. Ntum, S.-J.; Samje, M.; Cho-Ngwa, F.; T. Ndifon, P.; N. Yong, J. Synthesis and anti-onchocercal activity of isonicotinoyl hydrazones and their copper(II) and zinc(II) complexes. Antiinfect. Agents 2016, 14, 47-52.
https://doi.org/10.2174/2211352514666151124192211

[19]. Ntum, S.-J. E.; Paboudam, A. G.; Conde, A. M.; Nyamen, L. D.; Mohamadou, A.; Raftery, J.; Ndifon, P. T. Synthesis and crystal structure of N-(2-pyridylmethyl)-L-alanine) isothiocyanate cobalt (III). Cryst. Struct. Theory Appl. 2017, 06, 39-56.
https://doi.org/10.4236/csta.2017.63004

[20]. Ntum, S.-J. E.; Ndosiri, B. N.; Mohamadou, A.; Marrot, J.; Agwara, M. O.; Raftery, J.; Malik, M. A.; Ndifon, P. T. Synthesis, characterization and X-ray crystal structures of two non-molecular coordination polymers of manganese(II) and copper(II) with N-(2-pyridylmethyl)-l-alanine and isothiocyanato ligands. Transit. Met. Chem. 2016, 41, 889-896.
https://doi.org/10.1007/s11243-016-0091-y

[21]. Tyagi, M.; Chandra, S. Synthesis, characterization and biocidal properties of platinum metal complexes derived from 2,6-diacetyl pyridine (bis thiosemicarbazone). Open J. Inorg. Chem. 2012, 02, 41-48.
https://doi.org/10.4236/ojic.2012.23007

[22]. Newton, S. M.; Lau, C.; Gurcha, S. S.; Besra, G. S.; Wright, C. W. The evaluation of forty-three plant species for in vitro antimycobacterial activities; isolation of active constituents from Psoralea corylifolia and Sanguinaria canadensis. J. Ethnopharmacol. 2002, 79, 57-67.
https://doi.org/10.1016/S0378-8741(01)00350-6

[23]. Pfaller, M. A.; Andes, D.; Diekema, D. J.; Espinel-Ingroff, A.; Sheehan, D.; CLSI Subcommittee for Antifungal Susceptibility Testing Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist. Updat. 2010, 13, 180-195.
https://doi.org/10.1016/j.drup.2010.09.002

[24]. Scherer, R.; Godoy, H. T. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009, 112, 654-658.
https://doi.org/10.1016/j.foodchem.2008.06.026

[25]. Benzie, I. F.; Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal. Biochem. 1996, 239, 70-76.
https://doi.org/10.1006/abio.1996.0292

[26]. Kayed, S. F.; Farina, Y. Tin(IV) complex of 3,4-dihydroxybenzaldehyde 4-ethylthiosemicarbazone: Synthesis, spectral studies and molecular modeling. J. Saudi Chem. Soc. 2020, 24, 236-243.
https://doi.org/10.1016/j.jscs.2019.12.003

[27]. Ali, I.; Wani, W. A.; Saleem, K. Empirical formulae to molecular structures of metal complexes by molar conductance. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2013, 43, 1162-1170.
https://doi.org/10.1080/15533174.2012.756898

[28]. Refat, M. S.; Ibrahim, H. K.; Sowellim, S. Z. A.; Soliman, M. H.; Saeed, E. M. Spectroscopic and thermal studies of Mn(II), Fe(III), Cr(III) and Zn(II) complexes derived from the ligand resulted by the reaction between 4-acetyl pyridine and thiosemicarbazide. J. Inorg. Organomet. Polym. Mater. 2009, 19, 521-531.
https://doi.org/10.1007/s10904-009-9296-2

[29]. Reddy, M.; Prathima, B.; Saraswathi, M.; Babu, S.; Sarala, Y.; Reddy, A. Synthesis, spectral aspects and biological activities of 5-hydroxy-2-nitrobenzaldehydethiosemicarbazone and their Mn(II), Co(II) and Ni(II) complexes. J. Appl. Pharm. Sci. 2016, 090-096.
https://doi.org/10.7324/JAPS.2016.60514

[30]. El-Saied, F.; El-Aarag, B.; Salem, T.; Said, G.; Khalifa, S. A. M.; El-Seedi, H. R. Synthesis, characterization, and in vivo anti-cancer activity of new metal complexes derived from isatin-N(4)antipyrinethiosemi carbazone ligand against Ehrlich ascites carcinoma cells. Molecules 2019, 24, 3313.
https://doi.org/10.3390/molecules24183313

[31]. Jouad, E. M.; Riou, A.; Allain, M.; Khan, M. A.; Bouet, G. M. Synthesis, structural and spectral studies of 5-methyl 2-furaldehyde thiosemicarbazone and its Co, Ni, Cu and Cd complexes. Polyhedron 2001, 20, 67-74.
https://doi.org/10.1016/S0277-5387(00)00598-2

[32]. Abd El-Halim, H. F.; Omar, M. M.; Mohamed, G. G.; El-Ela Sayed, M. A. Spectroscopic and biological activity studies on tridentate Schiff base ligands and their transition metal complexes. Eur. J. Chem. 2011, 2, 178-188.
https://doi.org/10.5155/eurjchem.2.2.178-188.240

[33]. Mathan Kumar, S.; Kesavan, M. P.; Vinoth Kumar, G. G.; Sankarganesh, M.; Chakkaravarthi, G.; Rajagopal, G.; Rajesh, J. New heteroleptic Zn(II) complexes of thiosemicarbazone and diimine Co-Ligands: Structural analysis and their biological impacts. J. Mol. Struct. 2018, 1153, 1-11.
https://doi.org/10.1016/j.molstruc.2017.09.070

[34]. Pahontu, E.; Fala, V.; Gulea, A.; Poirier, D.; Tapcov, V.; Rosu, T. Synthesis and characterization of some new Cu(II), Ni(II) and Zn(II) complexes with salicylidene thiosemicarbazones: antibacterial, antifungal and in vitro antileukemia activity. Molecules 2013, 18, 8812-8836.
https://doi.org/10.3390/molecules18088812

[35]. Singh, B. K.; Mishra, P.; Prakash, A.; Bhojak, N. Spectroscopic, electro chemical and biological studies of the metal complexes of the Schiff base derived from pyrrole-2-carbaldehyde and ethylenediamine. Arab. J. Chem. 2017, 10, S472-S483.
https://doi.org/10.1016/j.arabjc.2012.10.007

[36]. Reis, D. C.; Pinto, M. C. X.; Souza-Fagundes, E. M.; Wardell, S. M. S. V.; Wardell, J. L.; Beraldo, H. Antimony(III) complexes with 2-benzoyl pyridine-derived thiosemicarbazones: cytotoxicity against human leukemia cell lines. Eur. J. Med. Chem. 2010, 45, 3904-3910.
https://doi.org/10.1016/j.ejmech.2010.05.044

[37]. Barreto Bastos, A. M.; Alcântara, A. F. de C.; Beraldo, H. Structural analyses of 4-benzoylpyridine thiosemicarbazone using NMR techniques and theoretical calculations. Tetrahedron 2005, 61, 7045-7053.
https://doi.org/10.1016/j.tet.2005.04.042

[38]. Ahmed, I. T. Spectroscopic, thermal and electrochemical characteri-zation of synthesized divalent transition metal complexes with cysteine and 4-substituted thiosemicarbazides. Transit. Met. Chem. 2007, 32, 674-682.
https://doi.org/10.1007/s11243-007-0232-4

[39]. Gusev, A.; Braga, E.; Tyutyunik, A.; Gurchenko, V.; Berezovskaya, M.; Kryukova, M.; Kiskin, M.; Linert, W. Synthesis, photoluminescence and electrical study of pyrazolone-based azomethine ligand Zn(II) complexes. Materials (Basel) 2020, 13, 5698.
https://doi.org/10.3390/ma13245698

[40]. Shubina, V. S.; Kozina, V. I.; Shatalin, Y. V. Comparison of antioxidant properties of a conjugate of taxifolin with glyoxylic acid and selected flavonoids. Antioxidants (Basel) 2021, 10, 1262.
https://doi.org/10.3390/antiox10081262

[41]. Alarabi, H.; S. Mohamed, S.; A. Suayed, W.; A. Al-Sadawe, I.; M. Bensaber, S.; M. Sherif, F.; Hermann, A.; Gbaj, A. Antimicrobial evaluation of novel metals complexes of n-isonicotinamido-2-hydroxy-5-methoxybenzalaldimine. J. Pharm. Pharmacol. Res. 2018, 02, 039-055.
https://doi.org/10.26502/jppr.0009

[42]. Belaid, S.; Landreau, A.; Djebbar, S.; Benali-Baitich, O.; Bouet, G.; Bouchara, J.-P. Synthesis, characterization and antifungal activity of a series of manganese(II) and copper(II) complexes with ligands derived from reduced N,N'-O-phenylenebis(salicylideneimine). J. Inorg. Biochem. 2008, 102, 63-69.
https://doi.org/10.1016/j.jinorgbio.2007.07.001

[43]. Tadavi, S. K.; Yadav, A. A.; Bendre, R. S. Synthesis and characterization of a novel schiff base of 1,2-diaminopropane with substituted salicyaldehyde and its transition metal complexes: Single crystal structures and biological activities. J. Mol. Struct. 2018, 1152, 223-231.
https://doi.org/10.1016/j.molstruc.2017.09.112

[44]. Al-Amiery, A. A.; Kadhum, A. A. H.; Mohamad, A. B. Antifungal and antioxidant activities of pyrrolidone thiosemicarbazone complexes. Bioinorg. Chem. Appl. 2012, 2012, 795812.
https://doi.org/10.1155/2012/795812

[45]. Tetteh, S.; Dodoo, D. K.; Appiah-Opong, R.; Tuffour, I. Cytotoxicity, antioxidant and glutathione S-transferase inhibitory activity of palladium(II) chloride complexes bearing nucleobase ligands. Transit. Met. Chem. 2014, 39, 667-674.
https://doi.org/10.1007/s11243-014-9848-3

[46]. Ibrahim, M.; Khan, A.; Ikram, M.; Rehman, S.; Shah, M.; Nabi, H.; Ahuchaogu, A. In vitro antioxidant properties of novel Schiff base complexes. Asian J. Chem. Sci. 2017, 2, 1-12.
https://doi.org/10.9734/AJOCS/2017/32244

Supporting Agencies

The “Fond Spéciale pour la Modernization de la Recherche Universitaire au Cameroun” (Decree n° 2009/121 of 8 April 2009), Cameroun.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).