European Journal of Chemistry 2022, 13(4), 381-386 | doi: https://doi.org/10.5155/eurjchem.13.4.381-386.2299 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Kinetically simulation of photo-Fenton process in removal of sulfamethazine, ciprofloxacin, sulfathiazole and amoxicillin by Monte Carlo modeling


Hamid Dezhampanah (1,*) orcid , Hamed Moradmand Jalali (2) orcid

(1) Department of Chemistry, Faculty of Science, University of Guilan, Rasht 0098, Iran
(2) Department of Chemistry, University Campus 2, University of Guilan, Rasht 0098, Iran
(*) Corresponding Author

Received: 03 Jul 2022 | Revised: 18 Aug 2022 | Accepted: 11 Sep 2022 | Published: 31 Dec 2022 | Issue Date: December 2022

Abstract


Kinetic Monte Carlo modeling was employed to investigate the kinetics and photodecomposition mechanism of sulfamethazine, ciprofloxacin, sulfathiazole, and amoxicillin antibiotics by the photo-Fenton process (iron(III) citrate/hydrogen peroxide in the presence of UV irradiation). The reaction kinetic mechanisms of each photo-Fenton degradation mentioned above have been achieved. The rate constants values for each step of the reaction mechanisms (including photo-Fenton process of antibiotics) were obtained as adjustable parameters by kinetic Monte Carlo simulation. The optimized values of iron(III) citrate and hydrogen peroxide were investigated through the obtaining the effect of their initial amounts on the rate of antibiotic elimination utilizing kinetic Monte Carlo simulation. The perfect agreement is observed between the simulation results and the experimental photo-Fenton data for the systems above.


Keywords


Kinetics; Antibiotic; Simulation; Monte Carlo; Degradation; Photo-Fenton

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.13.4.381-386.2299

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 100 times | icon graph PDF Article downloaded 25 times

Funding information


University of Guilan, Rasht 0098, Iran.

References


[1]. Kim, S.; Aga, D. S. Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J. Toxicol. Environ. Health B Crit. Rev. 2007, 10, 559-573.
https://doi.org/10.1080/15287390600975137

[2]. Kümmerer, K. Antibiotics in the aquatic environment--a review--part I. Chemosphere 2009, 75, 417-434.
https://doi.org/10.1016/j.chemosphere.2008.11.086

[3]. Göbel, A.; McArdell, C. S.; Suter, M. J.-F.; Giger, W. Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry. Anal. Chem. 2004, 76, 4756-4764.
https://doi.org/10.1021/ac0496603

[4]. Igwegbe, C. A.; Mohmmadi, L.; Ahmadi, S.; Rahdar, A.; Khadkhodaiy, D.; Dehghani, R.; Rahdar, S. Modeling of adsorption of Methylene Blue dye on Ho-CaWO4 nanoparticles using Response Surface Methodology (RSM) and Artificial Neural Network (ANN) techniques. MethodsX 2019, 6, 1779-1797.
https://doi.org/10.1016/j.mex.2019.07.016

[5]. Ahmadi, S.; Mohammadi, L.; Rahdar, A.; Rahdar, S.; Dehghani, R.; Igwegbe, C. A.; Kyzas, G. Z. Acid dye removal from aqueous solution by using neodymium(III) oxide nanoadsorbents. Nanomaterials (Basel) 2020, 10, 556.
https://doi.org/10.3390/nano10030556

[6]. Rahdar, S.; Rahdar, A.; Zafar, M. N.; Shafqat, S. S.; Ahmadi, S. Synthesis and characterization of MgO supported Fe-Co-Mn nanoparticles with exceptionally high adsorption capacity for Rhodamine B dye. J. Mater. Res. Technol. 2019, 8, 3800-3810.
https://doi.org/10.1016/j.jmrt.2019.06.041

[7]. Osagie, C.; Othmani, A.; Ghosh, S.; Malloum, A.; Kashitarash Esfahani, Z.; Ahmadi, S. Dyes adsorption from aqueous media through the nanotechnology: A review. J. Mater. Res. Technol. 2021, 14, 2195-2218.
https://doi.org/10.1016/j.jmrt.2021.07.085

[8]. Rahdar, S.; Rahdar, A.; Ahmadi, S.; Zafar, M. N.; Mohamadi, L.; Labuto, G.; Kekha, M. A. Removal of sulfonated azo reactive red 198 from water by CeO2 nanoparticles. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100384.
https://doi.org/10.1016/j.enmm.2020.100384

[9]. Baeza, C.; Knappe, D. R. U. Transformation kinetics of biochemically active compounds in low-pressure UV photolysis and UV/H(2)O(2) advanced oxidation processes. Water Res. 2011, 45, 4531-4543.
https://doi.org/10.1016/j.watres.2011.05.039

[10]. Huber, M. M.; Canonica, S.; Park, G.-Y.; von Gunten, U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ. Sci. Technol. 2003, 37, 1016-1024.
https://doi.org/10.1021/es025896h

[11]. Yin, H.; Li, G.; Chen, X.; Wang, W.; Wong, P. K.; Zhao, H.; An, T. Accelerated evolution of bacterial antibiotic resistance through early emerged stress responses driven by photocatalytic oxidation. Appl. Catal. B 2020, 269, 118829.
https://doi.org/10.1016/j.apcatb.2020.118829

[12]. Kim, J. R.; Kan, E. Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst. J. Environ. Manage. 2016, 180, 94-101.
https://doi.org/10.1016/j.jenvman.2016.05.016

[13]. Sousa, J. M.; Macedo, G.; Pedrosa, M.; Becerra-Castro, C.; Castro-Silva, S.; Pereira, M. F. R.; Silva, A. M. T.; Nunes, O. C.; Manaia, C. M. Ozonation and UV254nm radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater. J. Hazard. Mater. 2017, 323, 434-441.
https://doi.org/10.1016/j.jhazmat.2016.03.096

[14]. Lima, M. J.; Silva, C. G.; Silva, A. M. T.; Lopes, J. C. B.; Dias, M. M.; Faria, J. L. Homogeneous and heterogeneous photo-Fenton degradation of antibiotics using an innovative static mixer photoreactor. Chem. Eng. J. 2017, 310, 342-351.
https://doi.org/10.1016/j.cej.2016.04.032

[15]. Sopaj, F.; Oturan, N.; Pinson, J.; Podvorica, F. I.; Oturan, M. A. Effect of cathode material on electro-Fenton process efficiency for electrocatalytic mineralization of the antibiotic sulfamethazine. Chem. Eng. J. 2020, 384, 123249.
https://doi.org/10.1016/j.cej.2019.123249

[16]. Sun, S.; Yao, H.; Fu, W.; Xue, S.; Zhang, W. Enhanced degradation of antibiotics by photo-fenton reactive membrane filtration. J. Hazard. Mater. 2020, 386, 121955.
https://doi.org/10.1016/j.jhazmat.2019.121955

[17]. Bandara, J.; Pulgarin, C.; Peringer, P.; Kiwi, J. Chemical (photo-activated) coupled biological homogeneous degradation of p-nitro-o-toluene-sulfonic acid in a flow reactor. J. Photochem. Photobiol. A Chem. 1997, 111, 253-263.
https://doi.org/10.1016/S1010-6030(97)00249-9

[18]. Pignatello, J. J. Dark and photoassisted iron(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol. 1992, 26, 944-951.
https://doi.org/10.1021/es00029a012

[19]. Perini, J. A. L.; Tonetti, A. L.; Vidal, C.; Montagner, C. C.; Nogueira, R. F. P. Simultaneous degradation of ciprofloxacin, amoxicillin, sulfathiazole and sulfamethazine, and disinfection of hospital effluent after biological treatment via photo-Fenton process under ultraviolet germicidal irradiation. Appl. Catal. B 2018, 224, 761-771.
https://doi.org/10.1016/j.apcatb.2017.11.021

[20]. Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087-1092.
https://doi.org/10.1063/1.1699114

[21]. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, England, 1989.
https://doi.org/10.1063/1.2810937

[22]. Frenkel, D.; Smit, B. Understanding molecular simulation: From algorithms to applications; 2nd ed.; Academic Press: San Diego, CA, 2001.

[23]. Auerbach, S. M. Theory and simulation of jump dynamics, diffusion and phase equilibrium in nanopores. Int. Rev. Phys. Chem. 2000, 19, 155-198.
https://doi.org/10.1080/01442350050020879

[24]. Monte Carlo methods in statistical physics; Binder, K., Ed.; Springer: Berlin, Germany, 1986.

[25]. Binder, K. Atomistic modeling of materials properties by Monte Carlo Simulation. Adv. Mater. 1992, 4, 540-547.
https://doi.org/10.1002/adma.19920040904

[26]. Landau, D. P.; Binder, K. A guide to Monte Carlo simulations in statistical physics; 3rd ed.; Cambridge University Press: Cambridge, England, 2009.
https://doi.org/10.1017/CBO9780511994944

[27]. Simulation of liquids and solids: Molecular dynamics and Monte Carlo methods in statistical mechanics; Ciccotti, G.; etc.; Frenkel, D.; McDonald, I. R., Eds.; Elsevier Science: London, England, 1987.

[28]. Dooling, D. J.; Broadbelt, L. J. Generic Monte Carlo tool for kinetic modeling. Ind. Eng. Chem. Res. 2001, 40, 522-529.
https://doi.org/10.1021/ie000310q

[29]. Gilmer, G. H.; Huang, H.; de la Rubia, T. D.; Dalla Torre, J.; Baumann, F. Lattice Monte Carlo models of thin film deposition. Thin Solid Films 2000, 365, 189-200.
https://doi.org/10.1016/S0040-6090(99)01057-3

[30]. Nieminen, R. M.; Jansen, A. P. J. Monte Carlo simulations of surface reactions. Appl. Catal. A Gen. 1997, 160, 99-123.
https://doi.org/10.1016/S0926-860X(97)00130-0

[31]. Alfonso, D. R.; Tafen, D. N. Simulation of atomic diffusion in the FCC NiAl system: A kinetic Monte Carlo study. J. Phys. Chem. C Nanomater. Interfaces 2015, 119, 11809-11817.
https://doi.org/10.1021/acs.jpcc.5b00733

[32]. Liau, L. C.-K.; Lin, C.-Y. Vacancy defect distribution of colloidal particle deposition in a sedimentation process investigated using Kinetic Monte Carlo simulation. Colloids Surf. A Physicochem. Eng. Asp. 2011, 388, 70-76.
https://doi.org/10.1016/j.colsurfa.2011.08.012

[33]. Jalali, H. M. Simulation of degradation of the organic contaminants ethylene glycol and phenol by iron nanoparticles using the kinetic Monte Carlo method. RSC Adv. 2014, 4, 32928-32933.
https://doi.org/10.1039/C4RA05392C

[34]. Bashiri, H. A new solution of Langmuir kinetic model for dissociative adsorption on solid surfaces. Chem. Phys. Lett. 2013, 575, 101-106.
https://doi.org/10.1016/j.cplett.2013.04.072

[35]. Bashiri, H.; Jalali, H. M.; Rasa, H. Determination of intracellular levels of reactive oxygen species using the 2,7-dichlorofluorescein diacetate assay by kinetic Monte Carlo simulation. Prog. React. Kinet. Mech. 2014, 39, 281-291.
https://doi.org/10.3184/146867814X14043731662945

[36]. Moradmand Jalali, H. Kinetic investigation of photo-catalytic activity of TiO2/metal nanocomposite in phenol photo-degradation using Monte Carlo simulation. RSC Adv. 2015, 5, 36108-36116.
https://doi.org/10.1039/C5RA02226F

[37]. Moradmand Jalali, H.; Bashiri, H.; Rasa, H. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 50, 59-63.
https://doi.org/10.1016/j.msec.2015.01.096

[38]. Jalali, H. M. Kinetic study of antibiotic ciprofloxacin ozonation by MWCNT/MnO2 using Monte Carlo simulation. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 924-929.
https://doi.org/10.1016/j.msec.2015.10.085

[39]. Hansen, E. W.; Neurock, M. First-principles-based Monte Carlo simulation of ethylene hydrogenation kinetics on pd. J. Catal. 2000, 196, 241-252.
https://doi.org/10.1006/jcat.2000.3018

[40]. Mei, D.; Hansen, E. W.; Neurock, M. Ethylene hydrogenation over bimetallic pd/Au(111) surfaces: Application of quantum chemical results and dynamic Monte Carlo simulation. J. Phys. Chem. B 2003, 107, 798-810.
https://doi.org/10.1021/jp0139890

[41]. Neurock, M.; Mei, D. Effects of Alloying Pd and Au on the Hydrogenation of Ethylene: An ab initio-Based Dynamic Monte Carlo Study. Top. Catal. 2002, 20, 5-23.

[42]. Mei, D.; Sheth, P.; Neurock, M.; Smith, C. First-principles-based kinetic Monte Carlo simulation of the selective hydrogenation of acetylene over Pd(111). J. Catal. 2006, 242, 1-15.
https://doi.org/10.1016/j.jcat.2006.05.009

[43]. Cuppen, H. M.; Karssemeijer, L. J.; Lamberts, T. The kinetic Monte Carlo method as a way to solve the master equation for interstellar grain chemistry. Chem. Rev. 2013, 113, 8840-8871.
https://doi.org/10.1021/cr400234a

[44]. Gillespie, D. T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 1976, 22, 403-434.
https://doi.org/10.1016/0021-9991(76)90041-3

[45]. IBM CSK Chemical Kinetics Simulator 1.01, IBM Almaden Research Center, IBM Corporation. http://www.almaden.ibm.com/st/msim/ ckspage.html (accessed September 11, 2021).


How to cite


Dezhampanah, H.; Jalali, H. Eur. J. Chem. 2022, 13(4), 381-386. doi:10.5155/eurjchem.13.4.381-386.2299
Dezhampanah, H.; Jalali, H. Kinetically simulation of photo-Fenton process in removal of sulfamethazine, ciprofloxacin, sulfathiazole and amoxicillin by Monte Carlo modeling. Eur. J. Chem. 2022, 13(4), 381-386. doi:10.5155/eurjchem.13.4.381-386.2299
Dezhampanah, H., & Jalali, H. (2022). Kinetically simulation of photo-Fenton process in removal of sulfamethazine, ciprofloxacin, sulfathiazole and amoxicillin by Monte Carlo modeling. European Journal of Chemistry, 13(4), 381-386. doi:10.5155/eurjchem.13.4.381-386.2299
Dezhampanah, Hamid, & Hamed Moradmand Jalali. "Kinetically simulation of photo-Fenton process in removal of sulfamethazine, ciprofloxacin, sulfathiazole and amoxicillin by Monte Carlo modeling." European Journal of Chemistry [Online], 13.4 (2022): 381-386. Web. 5 Feb. 2023
Dezhampanah, Hamid, AND Jalali, Hamed. "Kinetically simulation of photo-Fenton process in removal of sulfamethazine, ciprofloxacin, sulfathiazole and amoxicillin by Monte Carlo modeling" European Journal of Chemistry [Online], Volume 13 Number 4 (31 December 2022)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.13.4.381-386.2299


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2022, 13(4), 381-386 | doi: https://doi.org/10.5155/eurjchem.13.4.381-386.2299 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.