European Journal of Chemistry

Bimetallic dioxidovanadium(V) complex containing a malonohydrazide derivative ligand: Synthesis, characterization, and crystal structure

Crossmark


Main Article Content

Sunshine Dominic Kurbah

Abstract

In this paper, we report the synthesis and characterization of the dioxidovanadium(V) complex derived from a malonohydrazide ligand (N'1,N'3-bis(2-hydroxybenzylidene) malonohydrazide). The newly synthesized complex was characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), and the structure of the complex was also established by a single crystal X-ray diffraction study. The bimetallic complex crystallizes in the triclinic space group P-1 with the following parameters a = 10.8273(5) Å, b = 11.4677(6) Å, c = 15.0366(8) Å, α = 81.591(4)°, β = 83.018(4)°, γ = 76.326(4)°, = 1787.23(16) Å3, Z = 2, T = 292.5(2) K, μ(MoKα) = 0.600 mm-1, Dcalc = 1.463 g/cm3, 11730 reflections measured (6.236° ≤ 2Θ ≤ 58.062°), 7981 unique (Rint = 0.0231, Rsigma = 0.0506) which were used in all calculations. The final R1 was 0.0496 (I > 2σ(I)) and wR2 was 0.1255 (all data). The ligand was coordinated to the metal ions in a tridentate fashion through the donor O/N/O atoms. The metal ions adopted a square pyramidal geometry with slight distortion. Reaction of the complex with hydrogen peroxide was also carried out, and it was found that the complex reacts with hydrogen peroxide to form a peroxo complex.


icon graph This Abstract was viewed 317 times | icon graph Article PDF downloaded 131 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Kurbah, S. D. Bimetallic dioxidovanadium(V) Complex Containing a Malonohydrazide Derivative Ligand: Synthesis, Characterization, and Crystal Structure. Eur. J. Chem. 2022, 13, 387-392.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Berry, R. E.; Armstrong, E. M.; Beddoes, R. L.; Collison, D.; Ertok, S. N.; Helliwell, M.; Garner, C. D. The structural characterization of amavadin. Angew. Chem. Int. Ed Engl. 1999, 38, 795-797.
https://doi.org/10.1002/(SICI)1521-3773(19990315)38:6<795::AID-ANIE795>3.0.CO;2-7

[2]. Oltz, E. M.; Bruening, R. C.; Smith, M. J.; Kustin, K.; Nakanishi, K. The tunichromes. A class of reducing blood pigments from sea squirts: isolation, structures, and vanadium chemistry. J. Am. Chem. Soc. 1988, 110, 6162-6172.
https://doi.org/10.1021/ja00226a035

[3]. Rehder, D. Bioinorganic Vanadium Chemistry; Wiley-Blackwell: Hoboken, NJ, 2008.
https://doi.org/10.1002/9780470994429

[4]. Pessoa, J. C.; Crans, D. C.; Kustin, K. Preface: Recent advances and highlights of the 5th international vanadium symposium. ACS Symp. Ser. Am. Chem. Soc. 2007, xi-xliii.
https://doi.org/10.1021/bk-2007-0974.pr001

[5]. Tracey, A. S.; Willsky, G. R.; Takeuchi, E. S. Vanadium: Chemistry, biochemistry, pharmacology and practical applications; CRC Press: Boca Raton, FL, 2007.
https://doi.org/10.1201/9781420046144

[6]. Iannuzzi, M. M.; Rieger, P. H. Nature of vanadium(IV) in basic aqueous solution. Inorg. Chem. 1975, 14, 2895-2899.
https://doi.org/10.1021/ic50154a006

[7]. Müller, A.; Peters, F.; Pope, M. T.; Gatteschi, D. Polyoxometalates: Very large Clusters Nanoscale magnets. Chem. Rev. 1998, 98, 239-272.
https://doi.org/10.1021/cr9603946

[8]. Crans, D. C.; Tracey, A. S. The chemistry of vanadium in aqueous and nonaqueous solution. In ACS Symposium Series; American Chemical Society: Washington, DC, 1998; pp. 2-29.
https://doi.org/10.1021/bk-1998-0711.ch001

[9]. Hamstra, B. J.; Houseman, A. L. P.; Colpas, G. J.; Kampf, J. W.; LoBrutto, R.; Frasch, W. D.; Pecoraro, V. L. Structural and solution characterization of mononuclear vanadium(IV) complexes that help to elucidate the active site structure of the reduced vanadium haloperoxidases. Inorg. Chem. 1997, 36, 4866-4874.
https://doi.org/10.1021/ic970284x

[10]. Keramidas, A. D.; Miller, S. M.; Anderson, O. P.; Crans, D. C. Vanadium(V) hydroxylamido complexes: Solid state and solution Properties1. J. Am. Chem. Soc. 1997, 119, 8901-8915.
https://doi.org/10.1021/ja970747y

[11]. Dutta, S. K.; Samanta, S.; Kumar, S. B.; Han, O. H.; Burckel, P.; Pinkerton, A. A.; Chaudhury, M. Mixed-oxidation divanadium(IV,V) compound with ligand asymmetry: Electronic and molecular structure in solution and in the solid state. Inorg. Chem. 1999, 38, 1982-1988.
https://doi.org/10.1021/ic980743+

[12]. Isupov, M. N.; Dalby, A. R.; Brindley, A. A.; Izumi, Y.; Tanabe, T.; Murshudov, G. N.; Littlechild, J. A. Crystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis. J. Mol. Biol. 2000, 299, 1035-1049.
https://doi.org/10.1006/jmbi.2000.3806

[13]. Weyand, M.; Hecht, H.; Kiess, M.; Liaud, M.; Vilter, H.; Schomburg, D. X-ray structure determination of a vanadium-dependent halo-peroxidase from Ascophyllum nodosum at 2.0 Å resolution Edited by R. Huber. J. Mol. Biol. 1999, 293, 595-611.
https://doi.org/10.1006/jmbi.1999.3179

[14]. Littlechild, J. Structural studies on the dodecameric vanadium bromoperoxidase from Corallina species. Coord. Chem. Rev. 2003, 237, 65-76.
https://doi.org/10.1016/S0010-8545(02)00226-6

[15]. Colpas, G. J.; Hamstra, B. J.; Kampf, J. W.; Pecoraro, V. L. Functional models for vanadium haloperoxidase: Reactivity and mechanism of Halide oxidation. J. Am. Chem. Soc. 1996, 118, 3469-3478.
https://doi.org/10.1021/ja953791r

[16]. Xie, M.; Gao, L.; Li, L.; Liu, W.; Yan, S. A new orally active antidiabetic vanadyl complex--bis(alpha-furancarboxylato)oxovanadium(IV). J. Inorg. Biochem. 2005, 99, 546-551.
https://doi.org/10.1016/j.jinorgbio.2004.10.033

[17]. Rehder, D. Biological and medicinal aspects of vanadium. Inorg. Chem. Commun. 2003, 6, 604-617.
https://doi.org/10.1016/S1387-7003(03)00050-9

[18]. Amin, S. S.; Cryer, K.; Zhang, B.; Dutta, S. K.; Eaton, S. S.; Anderson, O. P.; Miller, S. M.; Reul, B. A.; Brichard, S. M.; Crans, D. C. Chemistry and insulin-mimetic properties of bis(acetylacetonate)oxovanadium(IV) and Derivatives1. Inorg. Chem. 2000, 39, 406-416.
https://doi.org/10.1021/ic9905897

[19]. Jiang, N.; Ragauskas, A. J. Vanadium-catalyzed selective aerobic alcohol oxidation in ionic liquid [bmim]PF6. Tetrahedron Lett. 2007, 48, 273-276.
https://doi.org/10.1016/j.tetlet.2006.11.032

[20]. Jiang, N.; Ragauskas, A. J. Selective aerobic oxidation of activated alcohols into acids or aldehydes in ionic liquids. J. Org. Chem. 2007, 72, 7030-7033.
https://doi.org/10.1021/jo0707737

[21]. Radosevich, A. T.; Musich, C.; Toste, F. D. Vanadium-catalyzed asymmetric oxidation of alpha-hydroxy esters using molecular oxygen as stoichiometric oxidant. J. Am. Chem. Soc. 2005, 127, 1090-1091.
https://doi.org/10.1021/ja0433424

[22]. Pawar, V. D.; Bettigeri, S.; Weng, S.-S.; Kao, J.-Q.; Chen, C.-T. Highly enantioselective aerobic oxidation of alpha-hydroxyphosphonates catalyzed by chiral vanadyl(V) methoxides bearing N-salicylidene-alpha-aminocarboxylates. J. Am. Chem. Soc. 2006, 128, 6308-6309.
https://doi.org/10.1021/ja060639o

[23]. Ohde, C.; Limberg, C. From surface-inspired oxovanadium silsesquioxane models to active catalysts for the oxidation of alcohols with O(2)-the cinnamic acid/metavanadate system. Chemistry 2010, 16, 6892-6899.
https://doi.org/10.1002/chem.201000171

[24]. Djerdj, I.; Cao, M.; Rocquefelte, X.; Černý, R.; Jagličić, Z.; Arčon, D.; Potočnik, A.; Gozzo, F.; Niederberger, M. Structural characterization of a nanocrystalline Inorganic−Organic hybrid with fiberlike morphology and one-dimensional antiferromagnetic properties. Chem. Mater. 2009, 21, 3356-3369.
https://doi.org/10.1021/cm901345h

[25]. Marino, N.; Lloret, F.; Julve, M.; Doyle, R. P. Synthetically persistent, self assembled [V(IV)2V(V)4] polyoxovanadates: facile synthesis, structure and magnetic analysis. Dalton Trans. 2011, 40, 12248-12256.
https://doi.org/10.1039/c1dt11004g

[26]. Santamaría-González, J.; Luque-Zambrana, J.; Mérida-Robles, J.; Maireles-Torres, P.; Rodríguez-Castellón, E.; Jiménez-López, A. Catalytic behavior of vanadium-containing mesoporous silicas in the oxidative dehydrogenation of propane. Catal. Letters 2000, 68, 67-73.
https://doi.org/10.1023/A:1019098428836

[27]. Taufiq-Yap, Y. H.; Rownaghi, A. A.; Hussein, M. Z.; Irmawati, R. Preparation of vanadium phosphate catalysts from VOPO4 · 2H2O: Effect of microwave irradiation on morphology and catalytic property. Catal. Letters 2007, 119, 64-71.
https://doi.org/10.1007/s10562-007-9190-x

[28]. Maurya, M. R.; Khan, A. A.; Azam, A.; Ranjan, S.; Mondal, N.; Kumar, A.; Avecilla, F.; Pessoa, J. C. Vanadium complexes having [V(IV)O](2+) and [V(V)O(2)](+) cores with binucleating dibasic tetradentate ligands: Synthesis, characterization, catalytic and antiamoebic activities. Dalton Trans. 2010, 39, 1345-1360.
https://doi.org/10.1039/B915752B

[29]. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[30]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[31]. Kurbah, S. D.; Kumar, A.; Syiemlieh, I.; Lal, R. A. Crystal structure and biomimetic activity of homobinuclear dioxidovanadium(V) complexes containing succinoyldihydrazones ligands. Polyhedron 2018, 139, 80-88.
https://doi.org/10.1016/j.poly.2017.10.013

[32]. Kurbah, S. D.; Lal, R. A. Bioinspired catalysis and bromoperoxidase like activity of a multistimuli-responsive supramolecular metallogel: supramolecular assembly triggered by pi-pi stacking and hydrogen bonding interactions. New J Chem 2020, 44, 5410-5418.
https://doi.org/10.1039/C9NJ05732C

[33]. Clark, R.; Brown, D. Chemistry of vanadium, niobium and tantalum; Pergamon Press: London, England, 1975.

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).