European Journal of Chemistry

A new hydrazide functionalized Schiff’s base derivative: Insights into crystallography, Hirshfeld surface, and energy framework analysis

Crossmark


Main Article Content

Vivek Prakash Malviya
Archisman Dutta

Abstract

A new hydrazide functionalized Schiff’s base derivative, N'-(3,4-dichlorobenzylidene)-4-hydroxybenzohydrazide (I), has been synthesized using a solvent-assisted mechano-chemical grinding strategy and structurally characterized using elemental analysis, 1H NMR and crystallographic studies. The single crystal X-ray diffraction study depicts that molecule is puckered with two aromatic rings lying out-of-plane in near anti-configuration across the C=N bond. The weak interactions involved in supramolecular framework formation are Cl···O, Cl···Cl, Cl···H, Cl···N, C···H, and O···H contacts. The intermolecular O···H interaction being stronger than other dispersive interactions such as halogen bonding, interlocks the molecules in a 2D sheet-type packing. All the structure directing interactions involved in developing crystal architecture are addressed with Hirshfeld surface analysis and fingerprint plots. The energy framework analysis shows visualization of 3D topology of short contacts related to molecular packing of compound I which further clarifies the predominance of both Coulombic and dispersive energies in developing supramolecular architecture.


icon graph This Abstract was viewed 809 times | icon graph Article PDF downloaded 525 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Malviya, V. P.; Dutta, A. A New Hydrazide Functionalized Schiff’s Base Derivative: Insights into Crystallography, Hirshfeld Surface, and Energy Framework Analysis. Eur. J. Chem. 2022, 13, 351-357.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Desiraju, G. R.; Vittal, J. J.; Ramanan, A. Crystal Engineering: A Textbook; World Scientific Publishing: Singapore, Singapore, 2011.
https://doi.org/10.1142/8060

[2]. He, J.; Wang, J.; Xu, Q.; Wu, X.; Dutta, A.; Kumar, A.; Muddassir, M.; Alowais, A.; Abduh, N. A. Y. Syntheses and crystal structures of new dinuclear lanthanide complexes based on 3-(4-hydroxyphenyl) propanoic acid: Hirshfeld surface analyses and photoluminescence sensing. New J Chem 2019, 43, 13499-13508.
https://doi.org/10.1039/C9NJ02213A

[3]. Dutta, A.; Pan, Y.; Liu, J.-Q.; Kumar, A. Multicomponent isoreticular metal-organic frameworks: Principles, current status and challenges. Coord. Chem. Rev. 2021, 445, 214074.
https://doi.org/10.1016/j.ccr.2021.214074

[4]. Bauzá, A.; Seth, S. K.; Frontera, A. Tetrel bonding interactions at work: Impact on tin and lead coordination compounds. Coord. Chem. Rev. 2019, 384, 107-125.
https://doi.org/10.1016/j.ccr.2019.01.003

[5]. Krishna, G. R.; Devarapalli, R.; Lal, G.; Reddy, C. M. Mechanically flexible organic crystals achieved by introducing weak interactions in structure: Supramolecular shape synthons. J. Am. Chem. Soc. 2016, 138, 13561-13567.
https://doi.org/10.1021/jacs.6b05118

[6]. Desiraju, G. R. Supramolecular synthons in crystal engineering-A new organic synthesis. Angew. Chem. Int. Ed. Engl. 1995, 34, 2311-2327.
https://doi.org/10.1002/anie.199523111

[7]. Diyali, N.; Chettri, M.; De, A.; Biswas, B. Synthesis, crystal structure, and antidiabetic property of hydrazine functionalized Schiff base: 1,2-Di(benzylidene)hydrazine. Eur. J. Chem. 2022, 13, 234-240.
https://doi.org/10.5155/eurjchem.13.2.234-240.2265

[8]. Corey, E. J.; Cheng, X.-M. The logic of chemical synthesis; Wiley-Interscience: New York, 2009.

[9]. Dutta, A.; Mondal, S.; Singh, P. K.; Ray, B. Single crystal investigation, Hirshfeld surface and interaction energy framework analyses of structure-directing interactions within two isomorphous Schiff's base multicomponent salts. J. Mol. Struct. 2022, 1264, 133224.
https://doi.org/10.1016/j.molstruc.2022.133224

[10]. Dutta, A.; Singh, A.; Wang, X.; Kumar, A.; Liu, J. Luminescent sensing of nitroaromatics by crystalline porous materials. CrystEngComm 2020, 22, 7736-7781.
https://doi.org/10.1039/D0CE01087A

[11]. Desiraju, G. R. Crystal engineering: From molecule to crystal. J. Am. Chem. Soc. 2013, 135, 9952-9967.
https://doi.org/10.1021/ja403264c

[12]. Saha, S.; Mishra, M. K.; Reddy, C. M.; Desiraju, G. R. From molecules to interactions to crystal engineering: Mechanical properties of organic solids. Acc. Chem. Res. 2018, 51, 2957-2967.
https://doi.org/10.1021/acs.accounts.8b00425

[13]. Supramolecular assemblies based on electrostatic interactions; Aboudzadeh, M. A.; Frontera, A., Eds.; 1st ed.; Springer International Publishing: Cham, Switzerland, 2022.

[14]. Mahmoudi, G.; Masoudiasl, A.; Babashkina, M. G.; Frontera, A.; Doert, T.; White, J. M.; Zangrando, E.; Zubkov, F. I.; Safin, D. A. On the importance of π-hole spodium bonding in tricoordinated HgII complexes. Dalton Trans. 2020, 49, 17547-17551.
https://doi.org/10.1039/D0DT03938A

[15]. Boldyreva, E. Mechanochemistry of inorganic and organic systems: what is similar, what is different? Chem. Soc. Rev. 2013, 42, 7719-7738.
https://doi.org/10.1039/c3cs60052a

[16]. Desiraju, G. R. Crystal engineering: A holistic view. Angew. Chem. Int. Ed Engl. 2007, 46, 8342-8356.
https://doi.org/10.1002/anie.200700534

[17]. Green approaches in medicinal chemistry for sustainable drug design; Banik, B. K., Ed.; Elsevier Science Publishing: Philadelphia, PA, 2020.

[18]. Mahmoudi, G.; Abedi, M.; Lawrence, S. E.; Zangrando, E.; Babashkina, M. G.; Klein, A.; Frontera, A.; Safin, D. A. Tetrel bonding and other non-covalent interactions assisted supramolecular aggregation in a new Pb(II) complex of an isonicotinohydrazide. Molecules 2020, 25, 4056.
https://doi.org/10.3390/molecules25184056

[19]. CrysAlisPRO, Oxford Diffraction /Agilent Technologies UK Ltd, Yarnton, England.

[20]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.
https://doi.org/10.1107/S0021889808042726

[21]. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[22]. Barbour, L. J. X-Seed 4: updates to a program for small-molecule supramolecular crystallography. J. Appl. Crystallogr. 2020, 53, 1141-1146.
https://doi.org/10.1107/S1600576720007438

[23]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[24]. Spackman, M. A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19-32.
https://doi.org/10.1039/B818330A

[25]. Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575-587.
https://doi.org/10.1107/S205225251700848X

[26]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006-1011.
https://doi.org/10.1107/S1600576721002910

[27]. Jayatilaka, D.; Grimwood, D. J. Tonto: A FORTRAN based object-oriented system for quantum chemistry and crystallography. In Lecture Notes in Computer Science; Springer Berlin Heidelberg: Berlin, Heidelberg, 2003; pp. 142-151.
https://doi.org/10.1007/3-540-44864-0_15

[28]. Frontera, A.; Bauzá, A. On the importance of σ-hole interactions in crystal structures. Crystals (Basel) 2021, 11, 1205.
https://doi.org/10.3390/cryst11101205

[29]. Dutta, A.; Trivedi, M.; Alarifi, A.; Kumar, A.; Muddassir, M. A new 1D coordination polymer of triphenyl lead hydrosulfide: Synthesis and insights into crystal architecture and Hirshfeld surface analyses. J. Mol. Struct. 2020, 1207, 127801.
https://doi.org/10.1016/j.molstruc.2020.127801

[30]. Yuan, F.; Zhang, R.; Qiao, C.-F.; Luo, X.-X.; Zhou, C.-S.; Wang, J.; Yang, Q.; Sakiyama, H.; Muddassir, M.; Dutta, A. Series of Ln-metal organic frameworks: Photocatalytic performance and Hirshfeld surface analyses. J. Mol. Struct. 2022, 1251, 131956.
https://doi.org/10.1016/j.molstruc.2021.131956

Supporting Agencies

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).