

A density functional study of the coronene-pyrrole system in relation to its possible application as NO2 and NH3 sensors
Cinthya Susana Olmedo-Martinez (1)





(1) Departamento de Química, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, CP 54740, Estado de México, México
(2) Centro de Tecnologías en Cómputo y Comunicación, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, CP 54740, Estado de México, México
(3) Departamento de Ingeniería Industrial, Tecnológico de Estudios Superiores de Cuautitlán Izcalli, Cuautitlán Izcalli, CP 54748, Estado de México, México
(4) Departamento de Química, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, CP 54740, Estado de México, México
(5) Centro de Investigaciones Teóricas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, CP 54740, Estado de México, México
(*) Corresponding Author
Received: 30 Jul 2022 | Revised: 05 Sep 2022 | Accepted: 09 Sep 2022 | Published: 31 Dec 2022 | Issue Date: December 2022
Abstract
According to recent research on the application of graphene materials as sensors and particularly polypyrrole-graphene materials, which are especially promising, the functionalization of graphene with a pyrrole molecule might be considered a viable alternative as a NO2 and NH3 sensor. In this way, a graphene sheet simulated as a coronene molecule was used in order to test whether this kind of functionalization could be useful for detecting the NO2 and NH3 toxic gases with a relatively high sensitivity. NO2 was studied as an example of an electron acceptor molecule, and NH3 as an electron donor molecule. Both molecules were adsorbed on two different regions of the functionalized adsorbent, and the energy ranges found for adsorption were reported and compared with those of the pristine graphene. The results indicated that in the coronene-pyrrole system, pyrrole tends to lie almost parallel to the coronene sheet in a π-π stacking interaction between the two conjugated systems, being the closest distances of 3.0 and 3.2 Å. The use of Δ (ΔHOMO-LUMO) as a descriptor confirmed that the coronene-pyrrole system is a good option as a NO2- and NH3-sensor; therefore, it might be an easy and suitable descriptor for characterizing the performance of a sensor; all calculations were made using a Density Functional formalism, through a functional M06-2X in combination with the 6-31G(d,p) basis set.
Announcements
Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.
1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).
2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).
3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.13.4.371-380.2316
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
Universidad Nacional Autonoma de Mexico (LANCAD-UNAM-DGTIC-156) (DGTIC-UNAM), Catedra de Investigacion CI2202-FES-Cuautitlan-UNAM and COMECyT project FICDTEM-2021-080.
References
[1]. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
https://doi.org/10.1126/science.1102896
[2]. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.
https://doi.org/10.1126/science.1157996
[3]. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162.
https://doi.org/10.1103/RevModPhys.81.109
[4]. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.
https://doi.org/10.1103/PhysRevLett.100.016602
[5]. Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: a review of graphene. Chem. Rev. 2010, 110, 132-145.
https://doi.org/10.1021/cr900070d
[6]. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652-655.
https://doi.org/10.1038/nmat1967
[7]. Yavari, F.; Koratkar, N. Graphene-based chemical sensors. J. Phys. Chem. Lett. 2012, 3, 1746-1753.
https://doi.org/10.1021/jz300358t
[8]. Kochmann, S.; Hirsch, T.; Wolfbeis, O. S. Graphenes in chemical sensors and biosensors. Trends Analyt. Chem. 2012, 39, 87-113.
https://doi.org/10.1016/j.trac.2012.06.004
[9]. Varghese, S. S.; Lonkar, S.; Singh, K. K.; Swaminathan, S.; Abdala, A. Recent advances in graphene based gas sensors. Sens. Actuators B Chem. 2015, 218, 160-183.
https://doi.org/10.1016/j.snb.2015.04.062
[10]. Wang, T.; Huang, D.; Yang, Z.; Xu, S.; He, G.; Li, X.; Hu, N.; Yin, G.; He, D.; Zhang, L. A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nanomicro Lett. 2016, 8, 95-119.
https://doi.org/10.1007/s40820-015-0073-1
[11]. Abdelhalim, A. O. E.; Semenov, K. N.; Nerukh, D. A.; Murin, I. V.; Maistrenko, D. N.; Molchanov, O. E.; Sharoyko, V. V. Functionalisation of graphene as a tool for developing nanomaterials with predefined properties. J. Mol. Liq. 2022, 348, 118368.
https://doi.org/10.1016/j.molliq.2021.118368
[12]. Qian, Z.; Ma, J.; Shan, X.; Shao, L.; Zhou, J.; Chen, J.; Feng, H. Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation. RSC Adv. 2013, 3, 14571.
https://doi.org/10.1039/c3ra42066c
[13]. Yu, L.; Gao, H.; Zhao, J.; Qiu, J.; Yu, C. Adsorption of aromatic heterocyclic compounds on pristine and defect graphene: A first-principles study. J. Comput. Theor. Nanosci. 2011, 8, 2492-2497.
https://doi.org/10.1166/jctn.2011.1985
[14]. Zhang, Y.-H.; Chen, Y.-B.; Zhou, K.-G.; Liu, C.-H.; Zeng, J.; Zhang, H.-L.; Peng, Y. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 2009, 20, 185504.
https://doi.org/10.1088/0957-4484/20/18/185504
[15]. Boukhvalov, D. W.; Katsnelson, M. I. Chemical functionalization of graphene. J. Phys. Condens. Matter 2009, 21, 344205.
https://doi.org/10.1088/0953-8984/21/34/344205
[16]. Alzate-Carvajal, N.; Luican-Mayer, A. Functionalized graphene surfaces for selective gas sensing. ACS Omega 2020, 5, 21320-21329.
https://doi.org/10.1021/acsomega.0c02861
[17]. Tang, X.; Debliquy, M.; Lahem, D.; Yan, Y.; Raskin, J.-P. A review on functionalized graphene sensors for detection of ammonia. Sensors (Basel) 2021, 21, 1443.
https://doi.org/10.3390/s21041443
[18]. Adhikari, B.; Majumdar, S. Polymers in sensor applications. Prog. Polym. Sci. 2004, 29, 699-766.
https://doi.org/10.1016/j.progpolymsci.2004.03.002
[19]. Panapimonlawat, T.; Phanichphant, S.; Sriwichai, S. Electrochemical dopamine biosensor based on poly(3-aminobenzylamine) layer-by-layer self-assembled multilayer thin film. Polymers (Basel) 2021, 13, 1488.
https://doi.org/10.3390/polym13091488
[20]. Sadek, A. Z.; Wlodarski, W.; Kalantar-Zadeh, K.; Baker, C.; Kaner, R. B. Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors. Sens. Actuators A Phys. 2007, 139, 53-57.
https://doi.org/10.1016/j.sna.2006.11.033
[21]. Virji, S.; Kaner, R. B.; Weiller, B. H. Hydrogen sensors based on conductivity changes in polyaniline nanofibers. J. Phys. Chem. B 2006, 110, 22266-22270.
https://doi.org/10.1021/jp063166g
[22]. Al-Mashat, L.; Shin, K.; Kalantar-zadeh, K.; Plessis, J. D.; Han, S. H.; Kojima, R. W.; Kaner, R. B.; Li, D.; Gou, X.; Ippolito, S. J.; Wlodarski, W. Graphene/polyaniline nanocomposite for hydrogen sensing. J. Phys. Chem. C Nanomater. Interfaces 2010, 114, 16168-16173.
https://doi.org/10.1021/jp103134u
[23]. Liu, X.; Ly, J.; Han, S.; Zhang, D.; Requicha, A.; Thompson, M. E.; Zhou, C. Synthesis and electronic properties of individual single-walled carbon nanotube/polypyrrole composite nanocables. Adv. Mater. 2005, 17, 2727-2732.
https://doi.org/10.1002/adma.200501211
[24]. Leenaerts, O.; Partoens, B.; Peeters, F. M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 77, 125416.
[25]. Bonfanti, M.; Martinazzo, R.; Tantardini, G. F.; Ponti, A. Physisorption and Diffusion of Hydrogen Atoms on Graphite from Correlated Calculations on the H-Coronene Model System. J. Phys. Chem. C 2007 111, 16, 5825-5829.
https://doi.org/10.1021/jp070616b
[26]. Mattson, E. C.; Pande, K.; Unger, M.; Cui, S.; Lu, G.; Gajdardziska-Josifovska, M.; Weinert, M.; Chen, J.; Hirschmugl, C. J. Exploring adsorption and reactivity of NH3 on reduced graphene oxide. J. Phys. Chem. C Nanomater. Interfaces 2013, 117, 10698-10707.
https://doi.org/10.1021/jp3122853
[27]. Jang, W.-K.; Yun, J.; Kim, H.-I.; Lee, Y.-S. Improvement of ammonia sensing properties of polypyrrole by nanocomposite with graphitic materials. Colloid Polym. Sci. 2013, 291, 1095-1103.
https://doi.org/10.1007/s00396-012-2832-6
[28]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2009.
[29]. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215-241.
https://doi.org/10.1007/s00214-007-0310-x
[30]. Hohenstein, E. G.; Chill, S. T; Sherrill, C. D. Assessment of the Performance of the M05−2X and M06−2X Exchange-Correlation Functionals for Noncovalent Interactions in Biomolecules. J. Chem. Theory Comput. 2008, 4, 12, 1996-2000.
https://doi.org/10.1021/ct800308k
[31]. Rohini, K.; Sylvinson, D. M. R.; Swathi, R. S. Intercalation of HF, H2O, and NH3 clusters within the bilayers of graphene and graphene oxide: Predictions from coronene-based model systems. J. Phys. Chem. A 2015, 119, 10935-10945.
https://doi.org/10.1021/acs.jpca.5b05702
[32]. Yeamin, M. B.; Faginas-Lago, N.; Albertí, M.; Cuesta, I. G.; Sánchez-Marín, J.; Sánchez de Merás, A. M. J. Multi-scale theoretical investigation of molecular hydrogen adsorption over graphene: coronene as a case study. RSC Adv. 2014, 4, 54447-54453.
https://doi.org/10.1039/C4RA08487J
[33]. Wilson, J.; Faginas-Lago, N.; Vekeman, J.; Cuesta, I. G.; Sánchez-Marín, J.; Sánchez de Merás, A. Modeling the interaction of carbon monoxide with flexible graphene: From coupled cluster calculations to molecular-dynamics simulations. Chemphyschem 2018, 19, 774-783.
https://doi.org/10.1002/cphc.201701387
[34]. Petrushenko, I. K.; Petrushenko, K. B. Physical adsorption of N-containing heterocycles on graphene-like boron nitride-carbon heterostructures: A DFT study. Comput. Theor. Chem. 2017, 1117, 162-168.
https://doi.org/10.1016/j.comptc.2017.08.021
[35]. Rad, A. S.; Shabestari, S. S.; Mohseni, S.; Aghouzi, S. A. Study on the adsorption properties of O3, SO2, and SO3 on B-doped graphene using DFT calculations. J. Solid State Chem. 2016, 237, 204-210.
https://doi.org/10.1016/j.jssc.2016.02.023
[36]. Wanno, B.; Tabtimsai, C. A DFT investigation of CO adsorption on VIIIB transition metal-doped graphene sheets. Superlattices Microstruct. 2014, 67, 110-117.
https://doi.org/10.1016/j.spmi.2013.12.025
[37]. Anota, E. C.; Villanueva, M. S.; Cocoletzi, H. H. Density functional theory study of lithium and fluoride doped boron nitride sheet. Phys. Status Solidi C 2010, 7, 2559-2561.
https://doi.org/10.1002/pssc.200983909
[38]. Velázquez-López, L.-F.; Pacheco-Ortin, S.-M.; Mejía-Olvera, R.; Agacino-Valdés, E. DFT study of CO adsorption on nitrogen/boron doped-graphene for sensor applications. J. Mol. Model. 2019, 25, 91.
https://doi.org/10.1007/s00894-019-3973-z
[39]. Chung, L. W.; Sameera, W. M. C.; Ramozzi, R.; Page, A. J.; Hatanaka, M.; Petrova, G. P.; Harris, T. V.; Li, X.; Ke, Z.; Liu, F.; Li, H.-B.; Ding, L.; Morokuma, K. The ONIOM method and its applications. Chem. Rev. 2015, 115, 5678-5796.
https://doi.org/10.1021/cr5004419
[40]. Mayhall, N. J.; Raghavachari, K. Molecules-in-molecules: An extrapolated fragment-based approach for accurate calculations on large molecules and materials. J. Chem. Theory Comput. 2011, 7, 1336-1343.
https://doi.org/10.1021/ct200033b
[41]. Zhang, Z.; Huang, H.; Yang, X.; Zang, L. Tailoring electronic properties of graphene by π-π stacking with aromatic molecules. J. Phys. Chem. Lett. 2011, 2, 22, 2897-2905.
https://doi.org/10.1021/jz201273r
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.13.4.371-380.2316

















European Journal of Chemistry 2022, 13(4), 371-380 | doi: https://doi.org/10.5155/eurjchem.13.4.371-380.2316 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.