European Journal of Chemistry

Synthesis, crystal structure, DFT and Hirshfeld surface analysis of 4-fluoro-N-(1,3-dioxoisoindolin-2-yl)benzamide

Crossmark


Main Article Content

Ramakrishnan Elancheran
Balakrishnan Karthikeyan
Subramanian Srinivasan
Kuppusamy Krishnasamy
Senthamaraikannan Kabilan

Abstract

The 4-fluoro-N-(1,3-dioxoisoindolin-2-yl)benzamide was synthesized by the reaction of 4-fluorobenzohydrazide with phthalic anhydride in acetic acid. The compound was characterized by analytical instruments like FT-IR and NMR. The three-dimensional structure of the title compound was further confirmed by single-crystal X-ray diffraction study. In addition to the experimental study, theoretical calculations were performed to explore the molecular structure in order to analyze experimental and theoretical findings. The title compound crystallizes in the monoclinic space group P21/n as determined by the X-ray diffraction investigation, crystal data for C15H9FN2O3·H2O: a = 14.094(6) Å, b = 7.248(3) Å, c = 14.517(6) Å, β = 105.116(14)°, = 1431.6(10) Å3, Z = 4, T = 298(2) K, μ(MoKα) = 0.112 mm-1, Dcalc = 1.402 g/cm3, 37521 reflections measured (4.684° ≤ 2Θ ≤ 60.6°), 4225 unique (Rint = 0.0517, Rsigma = 0.0311) that were used in all calculations. The final R1 was 0.0537 (I > 2σ(I)) and wR2 was 0.1501 (all data). The N-H···O and O-H···O hydrogen bonds linking molecules in the crystal form a three-dimensional framework structure. The electronic states and molecular properties of the title compound were determined using computational studies, like density functional theory and Hirshfeld surface analysis.


icon graph This Abstract was viewed 763 times | icon graph Article PDF downloaded 208 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Elancheran, R.; Karthikeyan, B.; Srinivasan, S.; Krishnasamy, K.; Kabilan, S. Synthesis, Crystal Structure, DFT and Hirshfeld Surface Analysis of 4-Fluoro-N-(1,3-Dioxoisoindolin-2-yl)benzamide. Eur. J. Chem. 2023, 14, 1-8.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Halim, P. A.; Georgey, H. H.; George, M. Y.; El Kerdawy, A. M.; Said, M. F. Design and synthesis of novel 4-fluorobenzamide-based derivatives as promising anti-inflammatory and analgesic agents with an enhanced gastric tolerability and COX-inhibitory activity. Bioorg. Chem. 2021, 115, 105253.
https://doi.org/10.1016/j.bioorg.2021.105253

[2]. Aliabadi, A.; Mohammadi-Frarni, A.; Azizi, M.; Ahmadi, F. Design, synthesis and cytotoxicity evaluation of N-(5-benzylthio)-4H-1,2,4-triazol-3-YL)-4-fluorobenzamide derivatives as potential anticancer agents. Pharm. Chem. J. 2016, 49, 694-699.
https://doi.org/10.1007/s11094-016-1355-8

[3]. Klabunde, T.; Wendt, K. U.; Kadereit, D.; Brachvogel, V.; Burger, H.-J.; Herling, A. W.; Oikonomakos, N. G.; Kosmopoulou, M. N.; Schmoll, D.; Sarubbi, E.; von Roedern, E.; Schönafinger, K.; Defossa, E. Acyl ureas as human liver glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. J. Med. Chem. 2005, 48, 6178-6193.
https://doi.org/10.1021/jm049034y

[4]. Matalka, K. Z.; Alfarhoud, F.; Qinna, N. A.; Mallah, E. M.; Abu-Dayyih, W. A.; Muhi-eldeen, Z. A. Anti-inflammatory aminoacetylenic isoindoline-1,3-dione derivatives modulate cytokines production from different spleen cell populations. Int. Immunopharmacol. 2012, 14, 296-301.
https://doi.org/10.1016/j.intimp.2012.07.016

[5]. Kumar, S.; Kumar, N.; Roy, P.; Sondhi, S. M. Synthesis, anti-inflammatory, and antiproliferative activity evaluation of isoindole, pyrrolopyrazine, benzimidazoisoindole, and benzimidazopyrrolo pyrazine derivatives. Mol. Divers. 2013, 17, 753-766.
https://doi.org/10.1007/s11030-013-9472-8

[6]. Bhatia, R. Isoindole derivatives: Propitious anticancer structural motifs. Curr. Top. Med. Chem. 2016, 17, 189-207.
https://doi.org/10.2174/1568026616666160530154100

[7]. Tan, A.; Yaglioglu, A. S.; Kishali, N. H.; Sahin, E.; Kara, Y. Evaluation of cytotoxic potentials of some isoindole-1, 3-Dione derivatives on HeLa, C6 and A549 cancer cell lines. Med. Chem. 2020, 16, 69-77.
https://doi.org/10.2174/1573406415666181206115638

[8]. Csende, F.; Porkolab, A. Antiviral activity of isoindole derivatives. Journal of Medicinal and Chemical Sciences 2020, 3, 254-285.

[9]. Sipos, A.; Török, Z.; Rőth, E.; Kiss-Szikszai, A.; Batta, G.; Bereczki, I.; Fejes, Z.; Borbás, A.; Ostorházi, E.; Rozgonyi, F.; Naesens, L.; Herczegh, P. Synthesis of isoindole and benzoisoindole derivatives of teicoplanin pseudoaglycon with remarkable antibacterial and antiviral activities. Bioorg. Med. Chem. Lett. 2012, 22, 7092-7096.
https://doi.org/10.1016/j.bmcl.2012.09.079

[10]. Guzior, N.; Bajda, M.; Rakoczy, J.; Brus, B.; Gobec, S.; Malawska, B. Isoindoline-1,3-dione derivatives targeting cholinesterases: Design, synthesis and biological evaluation of potential anti-Alzheimer's agents. Bioorg. Med. Chem. 2015, 23, 1629-1637.
https://doi.org/10.1016/j.bmc.2015.01.045

[11]. Aliabadi, A.; Gholamine, B.; Karimi, T. Synthesis and antiseizure evaluation of isoindoline-1,3-dione derivatives in mice. Med. Chem. Res. 2014, 23, 2736-2743.
https://doi.org/10.1007/s00044-013-0870-3

[12]. Cardoso, M. V. de O.; Moreira, D. R. M.; Filho, G. B. O.; Cavalcanti, S. M. T.; Coelho, L. C. D.; Espíndola, J. W. P.; Gonzalez, L. R.; Rabello, M. M.; Hernandes, M. Z.; Ferreira, P. M. P.; Pessoa, C.; Alberto de Simone, C.; Guimarães, E. T.; Soares, M. B. P.; Leite, A. C. L. Design, synthesis and structure-activity relationship of phthalimides endowed with dual antiproliferative and immunomodulatory activities. Eur. J. Med. Chem. 2015, 96, 491-503.
https://doi.org/10.1016/j.ejmech.2015.04.041

[13]. Zhen, X.; Peng, Z.; Zhao, S.; Han, Y.; Jin, Q.; Guan, L. Synthesis, potential anticonvulsant and antidepressant effects of 2-(5-methyl-2,3-dioxoindolin-1-yl)acetamide derivatives. Acta Pharm. Sin. B. 2015, 5, 343-349.
https://doi.org/10.1016/j.apsb.2015.01.008

[14]. Huang, B.; Li, X.; Zhan, P.; De Clercq, E.; Daelemans, D.; Pannecouque, C.; Liu, X. Design, synthesis, and biological evaluation of novel 2-(pyridin-3-yloxy)acetamide derivatives as potential anti-HIV-1 agents. Chem. Biol. Drug Des. 2016, 87, 283-289.
https://doi.org/10.1111/cbdd.12657

[15]. Saravanan, K.; Elancheran, R.; Divakar, S.; Kabilan, S.; Selvanayagam, S. 2-Chloro-N-(4-phenyl-1,3-thiazol-2-yl)acetamide. IUCrdata 2016, 1, x160879.
https://doi.org/10.1107/S2414314616008798

[16]. Saravanan, K.; Divakar, S.; Elancheran, R.; Kabilan, S.; Selvanayagam, S. 4-[2-(1,3-Dioxoisoindolin-2-yl)-1,3-thiazol-4-yl]benzonitrile. IUCrdata 2016, 1, x161117.
https://doi.org/10.1107/S2414314616011172

[17]. Lakshmithendral, K.; Saravanan, K.; Elancheran, R.; Archana, K.; Manikandan, N.; Arjun, H. A.; Ramanathan, M.; Lokanath, N. K.; Kabilan, S. Design, synthesis and biological evaluation of 2-(phenoxymethyl)-5-phenyl-1,3,4-oxadiazole derivatives as anti-breast cancer agents. Eur. J. Med. Chem. 2019, 168, 1-10.
https://doi.org/10.1016/j.ejmech.2019.02.033

[18]. Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

[19]. Sheldrick, G. M. "SHELXS-97 and SHELXL-97, Program for Crystal Structure Solution and Refinement," University of Gottingen, Gottingen, 1997.

[20]. Frisch, M. J.; Trucks G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; A. J. Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Gaussian 09, Revision A. 02, Wallingford CT, 2009.

[21]. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.
https://doi.org/10.1063/1.464913

[22]. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter. 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[23]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 5, Semichem Inc.; Shawnee Mission, KS, 2009.

[24]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006-1011.
https://doi.org/10.1107/S1600576721002910

[25]. Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theoret. Chim. Acta 1977, 44, 129-138.
https://doi.org/10.1007/BF00549096

[26]. Wolff, S. K.; Grimwood, D.; McKinnon, J.; Jayatilaka, D.; Spackman, M. Crystal Explorer 3.0, University of Western Australia, Perth, Australia, 2012.

[27]. Binzet, G.; Flörke, U.; Külcü, N.; Arslan, H. Crystal and molecular structure of bis(4-bromo-N-(di-n-butylcarbamothioyl)benzamido) copper(II) complex. Eur. J. Chem. 2012, 3, 211-213.
https://doi.org/10.5155/eurjchem.3.2.211-213.594

[28]. Bülbül, H.; Köysal, Y.; Dege, N.; Gümüş, S.; Ağar, E. Crystal structure, spectroscopy, SEM analysis, and computational studies of N-(1,3-dioxoisoindolin-2yl)benzamide. J. Crystallogr. 2015, 2015, 1-6.
https://doi.org/10.1155/2015/232036

[29]. Etse, K. S.; Lamela, L. C.; Zaragoza, G.; Pirotte, B. Synthesis, crystal structure, Hirshfeld surface and interaction energies analysis of 5-methyl-1,3-bis(3-nitrobenzyl)pyrimidine-2,4(1H,3H)-dione. Eur. J. Chem. 2020, 11, 91-99.
https://doi.org/10.5155/eurjchem.11.2.91-99.1973

[30]. Ahangar, A. A.; Elancheran, R.; Dar, A. A. Influence of halogen substitution on crystal packing, molecular properties and electrochemical sensing. J. Solid State Chem. 2022, 314, 123382.
https://doi.org/10.1016/j.jssc.2022.123382

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).