

Synthesis, crystal structure, DFT and Hirshfeld surface analysis of 4-fluoro-N-(1,3-dioxoisoindolin-2-yl)benzamide
Ramakrishnan Elancheran (1,*)





(1) Department of Chemistry, Annamalai University, Chidambaram-608002, Tamil Nadu, India
(2) Department of Chemistry, Annamalai University, Chidambaram-608002, Tamil Nadu, India
(3) Department of Chemistry, Annamalai University, Chidambaram-608002, Tamil Nadu, India
(4) Department of Chemistry, Annamalai University, Chidambaram-608002, Tamil Nadu, India
(5) Department of Chemistry, Annamalai University, Chidambaram-608002, Tamil Nadu, India
(*) Corresponding Author
Received: 15 Aug 2022 | Revised: 10 Nov 2022 | Accepted: 15 Nov 2022 | Published: 31 Mar 2023 | Issue Date: March 2023
Abstract
The 4-fluoro-N-(1,3-dioxoisoindolin-2-yl)benzamide was synthesized by the reaction of 4-fluorobenzohydrazide with phthalic anhydride in acetic acid. The compound was characterized by analytical instruments like FT-IR and NMR. The three-dimensional structure of the title compound was further confirmed by single-crystal X-ray diffraction study. In addition to the experimental study, theoretical calculations were performed to explore the molecular structure in order to analyze experimental and theoretical findings. The title compound crystallizes in the monoclinic space group P21/n as determined by the X-ray diffraction investigation, crystal data for C15H9FN2O3·H2O: a = 14.094(6) Å, b = 7.248(3) Å, c = 14.517(6) Å, β = 105.116(14)°, V = 1431.6(10) Å3, Z = 4, T = 298(2) K, μ(MoKα) = 0.112 mm-1, Dcalc = 1.402 g/cm3, 37521 reflections measured (4.684° ≤ 2Θ ≤ 60.6°), 4225 unique (Rint = 0.0517, Rsigma = 0.0311) that were used in all calculations. The final R1 was 0.0537 (I > 2σ(I)) and wR2 was 0.1501 (all data). The N-H···O and O-H···O hydrogen bonds linking molecules in the crystal form a three-dimensional framework structure. The electronic states and molecular properties of the title compound were determined using computational studies, like density functional theory and Hirshfeld surface analysis.
Announcements
Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.
1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).
2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).
3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.14.1.1-8.2335
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
The University Grants Commission, New Delhi, for the UGC BSR Faculty Fellowship.
Citations
[1]. Jyoti Rasgania, Renu Gavadia, Surendra Nimesh, Lacy Loveleen, Satbir Mor, Devender Singh, Komal Jakhar
Synthesis of isatin-tagged thiadiazoles as anti-breast cancer leads: In-vitro and in-silico investigations
Journal of Molecular Structure 1294, 136464, 2023
DOI: 10.1016/j.molstruc.2023.136464

[2]. E.G. Sundararaman, R. Elancheran, M.N. Arumugham
Synthesis, crystal structure, DNA binding, molecular docking, DFT, Hirshfeld surface analysis, and cytotoxicity of copper (II) complex with malonamide and 2,9-dimethyl-1,10-phenanthroline
Journal of Molecular Structure 1287, 135736, 2023
DOI: 10.1016/j.molstruc.2023.135736

[3]. Arulraj Ramalingam, Sivakumar Sambandam, Hitler Louis, Anna Imojara, Gideon E. Mathias
Spectroscopic study, Hirshfeld surface, DFT, in-silico molecular docking and ADMET studies of 2,6-bis(4-chlorophenyl)-3-isopropylpiperidin-4-one (BCIP): A potent antiviral agent
Journal of Molecular Structure 1291, 135912, 2023
DOI: 10.1016/j.molstruc.2023.135912

[4]. Maryam Rashid, Ayesha Maqbool, Nusrat Shafiq, Yousef A. Bin Jardan, Shagufta Parveen, Mohammed Bourhia, Hiba-Allah Nafidi, Rashid Ahmed Khan
The combination of multi-approach studies to explore the potential therapeutic mechanisms of imidazole derivatives as an MCF-7 inhibitor in therapeutic strategies
Frontiers in Chemistry 11, , 2023
DOI: 10.3389/fchem.2023.1197665

[5]. Rongrong Li, Yan Zhang, Yi Le, Li Liu, Guangju Zhao
New quinazolone derivatives: Synthesis, Spectroscopic, X-ray, DFT calculation and Biological activity studies
Journal of Molecular Structure 1289, 135898, 2023
DOI: 10.1016/j.molstruc.2023.135898

[6]. Jaydeo T. Kilbile, Yasinalli Tamboli, Siddique Akber Ansari, Sanket S. Rathod, Prafulla B. Choudhari, Hamad Alkahtani, Suryakant B. Sapkal
Synthesis, Biological Evaluation, and Computational Studies of 6-Fluoro-3-(Piperidin-4-yl)-1,2-Benzisoxazole Sulfonamide Conjugates
Polycyclic Aromatic Compounds , 1, 2023
DOI: 10.1080/10406638.2023.2247117

References
[1]. Halim, P. A.; Georgey, H. H.; George, M. Y.; El Kerdawy, A. M.; Said, M. F. Design and synthesis of novel 4-fluorobenzamide-based derivatives as promising anti-inflammatory and analgesic agents with an enhanced gastric tolerability and COX-inhibitory activity. Bioorg. Chem. 2021, 115, 105253.
https://doi.org/10.1016/j.bioorg.2021.105253
[2]. Aliabadi, A.; Mohammadi-Frarni, A.; Azizi, M.; Ahmadi, F. Design, synthesis and cytotoxicity evaluation of N-(5-benzylthio)-4H-1,2,4-triazol-3-YL)-4-fluorobenzamide derivatives as potential anticancer agents. Pharm. Chem. J. 2016, 49, 694-699.
https://doi.org/10.1007/s11094-016-1355-8
[3]. Klabunde, T.; Wendt, K. U.; Kadereit, D.; Brachvogel, V.; Burger, H.-J.; Herling, A. W.; Oikonomakos, N. G.; Kosmopoulou, M. N.; Schmoll, D.; Sarubbi, E.; von Roedern, E.; Schönafinger, K.; Defossa, E. Acyl ureas as human liver glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. J. Med. Chem. 2005, 48, 6178-6193.
https://doi.org/10.1021/jm049034y
[4]. Matalka, K. Z.; Alfarhoud, F.; Qinna, N. A.; Mallah, E. M.; Abu-Dayyih, W. A.; Muhi-eldeen, Z. A. Anti-inflammatory aminoacetylenic isoindoline-1,3-dione derivatives modulate cytokines production from different spleen cell populations. Int. Immunopharmacol. 2012, 14, 296-301.
https://doi.org/10.1016/j.intimp.2012.07.016
[5]. Kumar, S.; Kumar, N.; Roy, P.; Sondhi, S. M. Synthesis, anti-inflammatory, and antiproliferative activity evaluation of isoindole, pyrrolopyrazine, benzimidazoisoindole, and benzimidazopyrrolo pyrazine derivatives. Mol. Divers. 2013, 17, 753-766.
https://doi.org/10.1007/s11030-013-9472-8
[6]. Bhatia, R. Isoindole derivatives: Propitious anticancer structural motifs. Curr. Top. Med. Chem. 2016, 17, 189-207.
https://doi.org/10.2174/1568026616666160530154100
[7]. Tan, A.; Yaglioglu, A. S.; Kishali, N. H.; Sahin, E.; Kara, Y. Evaluation of cytotoxic potentials of some isoindole-1, 3-Dione derivatives on HeLa, C6 and A549 cancer cell lines. Med. Chem. 2020, 16, 69-77.
https://doi.org/10.2174/1573406415666181206115638
[8]. Csende, F.; Porkolab, A. Antiviral activity of isoindole derivatives. Journal of Medicinal and Chemical Sciences 2020, 3, 254-285.
[9]. Sipos, A.; Török, Z.; Rőth, E.; Kiss-Szikszai, A.; Batta, G.; Bereczki, I.; Fejes, Z.; Borbás, A.; Ostorházi, E.; Rozgonyi, F.; Naesens, L.; Herczegh, P. Synthesis of isoindole and benzoisoindole derivatives of teicoplanin pseudoaglycon with remarkable antibacterial and antiviral activities. Bioorg. Med. Chem. Lett. 2012, 22, 7092-7096.
https://doi.org/10.1016/j.bmcl.2012.09.079
[10]. Guzior, N.; Bajda, M.; Rakoczy, J.; Brus, B.; Gobec, S.; Malawska, B. Isoindoline-1,3-dione derivatives targeting cholinesterases: Design, synthesis and biological evaluation of potential anti-Alzheimer's agents. Bioorg. Med. Chem. 2015, 23, 1629-1637.
https://doi.org/10.1016/j.bmc.2015.01.045
[11]. Aliabadi, A.; Gholamine, B.; Karimi, T. Synthesis and antiseizure evaluation of isoindoline-1,3-dione derivatives in mice. Med. Chem. Res. 2014, 23, 2736-2743.
https://doi.org/10.1007/s00044-013-0870-3
[12]. Cardoso, M. V. de O.; Moreira, D. R. M.; Filho, G. B. O.; Cavalcanti, S. M. T.; Coelho, L. C. D.; Espíndola, J. W. P.; Gonzalez, L. R.; Rabello, M. M.; Hernandes, M. Z.; Ferreira, P. M. P.; Pessoa, C.; Alberto de Simone, C.; Guimarães, E. T.; Soares, M. B. P.; Leite, A. C. L. Design, synthesis and structure-activity relationship of phthalimides endowed with dual antiproliferative and immunomodulatory activities. Eur. J. Med. Chem. 2015, 96, 491-503.
https://doi.org/10.1016/j.ejmech.2015.04.041
[13]. Zhen, X.; Peng, Z.; Zhao, S.; Han, Y.; Jin, Q.; Guan, L. Synthesis, potential anticonvulsant and antidepressant effects of 2-(5-methyl-2,3-dioxoindolin-1-yl)acetamide derivatives. Acta Pharm. Sin. B. 2015, 5, 343-349.
https://doi.org/10.1016/j.apsb.2015.01.008
[14]. Huang, B.; Li, X.; Zhan, P.; De Clercq, E.; Daelemans, D.; Pannecouque, C.; Liu, X. Design, synthesis, and biological evaluation of novel 2-(pyridin-3-yloxy)acetamide derivatives as potential anti-HIV-1 agents. Chem. Biol. Drug Des. 2016, 87, 283-289.
https://doi.org/10.1111/cbdd.12657
[15]. Saravanan, K.; Elancheran, R.; Divakar, S.; Kabilan, S.; Selvanayagam, S. 2-Chloro-N-(4-phenyl-1,3-thiazol-2-yl)acetamide. IUCrdata 2016, 1, x160879.
https://doi.org/10.1107/S2414314616008798
[16]. Saravanan, K.; Divakar, S.; Elancheran, R.; Kabilan, S.; Selvanayagam, S. 4-[2-(1,3-Dioxoisoindolin-2-yl)-1,3-thiazol-4-yl]benzonitrile. IUCrdata 2016, 1, x161117.
https://doi.org/10.1107/S2414314616011172
[17]. Lakshmithendral, K.; Saravanan, K.; Elancheran, R.; Archana, K.; Manikandan, N.; Arjun, H. A.; Ramanathan, M.; Lokanath, N. K.; Kabilan, S. Design, synthesis and biological evaluation of 2-(phenoxymethyl)-5-phenyl-1,3,4-oxadiazole derivatives as anti-breast cancer agents. Eur. J. Med. Chem. 2019, 168, 1-10.
https://doi.org/10.1016/j.ejmech.2019.02.033
[18]. Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
[19]. Sheldrick, G. M. "SHELXS-97 and SHELXL-97, Program for Crystal Structure Solution and Refinement," University of Gottingen, Gottingen, 1997.
[20]. Frisch, M. J.; Trucks G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; A. J. Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Gaussian 09, Revision A. 02, Wallingford CT, 2009.
[21]. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.
https://doi.org/10.1063/1.464913
[22]. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter. 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785
[23]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 5, Semichem Inc.; Shawnee Mission, KS, 2009.
[24]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006-1011.
https://doi.org/10.1107/S1600576721002910
[25]. Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theoret. Chim. Acta 1977, 44, 129-138.
https://doi.org/10.1007/BF00549096
[26]. Wolff, S. K.; Grimwood, D.; McKinnon, J.; Jayatilaka, D.; Spackman, M. Crystal Explorer 3.0, University of Western Australia, Perth, Australia, 2012.
[27]. Binzet, G.; Flörke, U.; Külcü, N.; Arslan, H. Crystal and molecular structure of bis(4-bromo-N-(di-n-butylcarbamothioyl)benzamido) copper(II) complex. Eur. J. Chem. 2012, 3, 211-213.
https://doi.org/10.5155/eurjchem.3.2.211-213.594
[28]. Bülbül, H.; Köysal, Y.; Dege, N.; Gümüş, S.; Ağar, E. Crystal structure, spectroscopy, SEM analysis, and computational studies of N-(1,3-dioxoisoindolin-2yl)benzamide. J. Crystallogr. 2015, 2015, 1-6.
https://doi.org/10.1155/2015/232036
[29]. Etse, K. S.; Lamela, L. C.; Zaragoza, G.; Pirotte, B. Synthesis, crystal structure, Hirshfeld surface and interaction energies analysis of 5-methyl-1,3-bis(3-nitrobenzyl)pyrimidine-2,4(1H,3H)-dione. Eur. J. Chem. 2020, 11, 91-99.
https://doi.org/10.5155/eurjchem.11.2.91-99.1973
[30]. Ahangar, A. A.; Elancheran, R.; Dar, A. A. Influence of halogen substitution on crystal packing, molecular properties and electrochemical sensing. J. Solid State Chem. 2022, 314, 123382.
https://doi.org/10.1016/j.jssc.2022.123382
Supporting information
The Supplementary Material for this article can be found online at: Supplementary files
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.14.1.1-8.2335

















European Journal of Chemistry 2023, 14(1), 1-8 | doi: https://doi.org/10.5155/eurjchem.14.1.1-8.2335 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.