European Journal of Chemistry

A corrected benzene nitration three-step mechanism derived by DFT calculation and MO theory

Crossmark


Main Article Content

Hongchang Shi

Abstract

Density-functional theory (DFT) calculations at the LC-wHPBE/6-311++G(d,p) level found that the textbook three-step nitration mechanism of benzene in mixed acids was seriously wrong. Step 1 of generating nitronium ion (NO2+) is not spontaneous, the NO2+ is generated by Lewis collision, and needs to overcome a barrier Ea = 18 or 22 kcal/mol in mixed acid or in nitric acid. Obtaining the Ea of the Lewis collision by quantum chemical calculations is a highlight of the study. The reaction system (NO2+ + H2O) + HSO4 or + NO3 or + nH2O (n ≥ 1) can make NO2+ spontaneously change to HNO3 through a poly(≥3)-molecular acidification. Sulfuric acid can greatly reduce [H2O] and increase [NO2+]. Therefore, the nitration rate in mixed acid is much faster than that in nitric acid. Step 2, C6H6 + NO2+, is an electrophilic addition, follows the transition state theory, and needs to overcome a low barrier, ΔE* = 7 kcal/mol. The product of Step 2 is the σ-complex C6H6-NO2+. The essence of the electrophilic addition is the transfer of HOMO-1 electrons of C6H6 to LUMO of NO2+. Step 3 is a spontaneous Lewis acid-base neutralization without any barrier, and generates the target product nitrobenzene C6H5NO2. NO2+ and σ-complex are the two active intermediates in nitration. The benzene nitration rate control step is not Step 2 of generating σ-complex, but is Step 1 to generate NO2+. The DFT calculation obtains the barriers Ea and ΔE*, the reaction heats ΔHσ and ΔHp of each step of the nitration, resulting in the total nitration reaction heat ΔH = -35 kcal/mol. It is consistent with the experimental ΔH = -34 kcal/mol. Based on the results, a corrected benzene nitration three-step mechanism proposed.


icon graph This Abstract was viewed 601 times | icon graph Article PDF downloaded 175 times icon graph Article SUPPLEMENTARY FILE downloaded 0 times

How to Cite
(1)
Shi, H. A Corrected Benzene Nitration Three-Step Mechanism Derived by DFT Calculation and MO Theory. Eur. J. Chem. 2023, 14, 39-52.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Graham Solomons, T. W. Organic Chemistry; 6th ed.; John Wiley and Sons (WIE): Brisbane, QLD, Australia, 1995.

[2]. Carey, F. A. Organic Chemistry; 2nd ed.; McGraw-Hill: New York, NY, 1992.

[3]. Vollhardt, K. P. C.; Schore, N. Organic Chemistry; 2nd ed.; W.H. Freeman: New York, NY, 1993.

[4]. Xing Q. Y.; Pei W. W.; Xu R.; Pei Q. J. Foundation of Organic Chemistry, Third Edition (Chinese); Higher Education Press: Beijing, China, 2005.

[5]. Smith, M. B.; March, J. March's advanced organic chemistry: Reactions, mechanisms, and structure; 7th ed.; Wiley-Blackwell: Hoboken, NJ, 2012.

[6]. Carey, F. A.; Sundberg, R. J. Advanced organic chemistry: Part A: Structure and mechanisms; 5th ed.; Springer: New York, NY, 2007.

[7]. Euler, H. Zur Kenntniss der aliphatischen Amine. Justus Liebigs Ann. Chem. 1904, 330, 280-291.
https://doi.org/10.1002/jlac.19043300210

[8]. Westheimer, F. H.; Kharasch, M. S. The kinetics of nitration of aromatic Nitro compounds in sulfuric acid. J. Am. Chem. Soc. 1946, 68, 1871-1876.
https://doi.org/10.1021/ja01214a001

[9]. Bennett, G. M.; Brand, J. C. D.; Williams, G. 188. Nitration in sulphuric acid. Part I. The nature of the nitrating agent in nitric-sulphuric acid mixtures. J. Chem. Soc. 1946, 869-875.
https://doi.org/10.1039/JR9460000869

[10]. Olah, G. A. Aromatic substitution. XXVIII. Mechanism of electrophilic aromatic substitutions. Acc. Chem. Res. 1971, 4, 240-248.
https://doi.org/10.1021/ar50043a002

[11]. Ridd, J. H. Mechanism of aromatic nitration. Acc. Chem. Res. 1971, 4, 248-253.
https://doi.org/10.1021/ar50043a003

[12]. Hughes, E. D.; Ingold, C. K.; Reed, R. I. Kinetics of aromatic nitration: The nitronium ion. Nature 1946, 158, 448-449.
https://doi.org/10.1038/158448c0

[13]. Hughes, E. D.; Ingold, C. K.; Reed, R. I. 493. Kinetics and mechanism of aromatic nitration. Part II. Nitration by the nitronium ion, NO2 +, derived from nitric acid. J. Chem. Soc. 1950, 2400-2440.
https://doi.org/10.1039/jr9500002400

[14]. Gold, V.; Hughes, E. D.; Ingold, C. K.; Williams, G. H. 495. Kinetics and mechanism of aromatic nitration. Part IV. Nitration by dinitrogen pentoxide in aprotic solvents. J. Chem. Soc. 1950, 2452-2466.
https://doi.org/10.1039/jr9500002452

[15]. Gold, V.; Hughes, E. D.; Ingold, C. K. 496. Kinetics and mechanism of aromatic nitration. Part V. Nitration by acyl nitrates, particularly by benzoyl nitrate. J. Chem. Soc. 1950, 2467-2473.
https://doi.org/10.1039/jr9500002467

[16]. Gillespie, R. J.; Hughes, E. D.; Ingold, C. K. 504. Cryoscopic measurements in nitric acid. Part I. The solutes dinitrogen pentoxide and water. The self-dissociation of nitric acid. J. Chem. Soc. 1950, 2552-2558.
https://doi.org/10.1039/jr9500002552

[17]. Ingold, C. K.; Millen, D. J.; Poole, H. G. 506. Vibrational spectra of ionic forms of oxides and oxy-acids of nitrogen. Part I. Raman-spectral evidence of the ionisation of nitric acid by perchloric, sulphuric, and selenic acids. Spectroscopic identification of the nitronium ion, NO2 +. J. Chem. Soc. 1950, 2576-2589.
https://doi.org/10.1039/jr9500002576

[18]. Ingold, C. K.; Millen, D. J. 510. Vibrational spectra of ionic forms of oxides and oxy-acids of nitrogen. Part V. Raman spectral evidence of the ionisation of dinitrogen pentoxide in nitric acid, and of the constitution of anhydrous nitric acid. J. Chem. Soc. 1950, 2612-2619.
https://doi.org/10.1039/jr9500002612

[19]. Bunton, C. A.; Hughes, E. D.; Ingold, C. K.; Jacobs, D. I. H.; Jones, M. H.; Minkoff, G. J.; Reed, R. I. 512. Kinetics and mechanism of aromatic nitration. Part VI. The nitration of phenols and phenolic ethers: the concomitant dealkylation of phenolic ethers. The role of nitrous acid. J. Chem. Soc. 1950, 2628-2656.
https://doi.org/10.1039/jr9500002628

[20]. Ingold, C. K. Structure and mechanism in organic chemistry; 2nd ed.; HarperCollins Distribution Services: Glasgow, Scotland, 1970.

[21]. Benford, G. A.; Bunton, C. A.; Halbertstadt, E. S.; Hughes, E. D.; Ingold, C. K.; Minkoff, G. J.; Reed, R. I. Univalent electron transfers in aromatic nitration? Nature 1945, 156, 688-688.
https://doi.org/10.1038/156688a0

[22]. Sheats, G. F.; Strachan, A. N. Rates and activation energies of nitronium ion formation and reaction in the nitration of toluene in ∼78% sulphuric acid. Can. J. Chem. 1978, 56, 1280-1283.
https://doi.org/10.1139/v78-212

[23]. Politzer, P.; Jayasuriya, K.; Sjoberg, P.; Laurence, P. R. Properties of some possible intermediate stages in the nitration of benzene and toluene. J. Am. Chem. Soc. 1985, 107, 1174-1177.
https://doi.org/10.1021/ja00291a015

[24]. Olah, G. A.; Malhotra, R.; Narang, S. C. Nitration: Methods and mechanisms; Wiley-Interscience: Newy York, 1989.

[25]. Cardoso, S. P.; Carneiro, J. W. de M. Nitração aromática: substituição eletrofílica ou reação com transferência de elétrons? Quim. Nova 2001, 24, 381-389.
https://doi.org/10.1590/S0100-40422001000300015

[26]. Gwaltney, S. R.; Rosokha, S. V.; Head-Gordon, M.; Kochi, J. K. Charge-transfer mechanism for electrophilic aromatic nitration and nitrosation via the convergence of (ab initio) molecular-orbital and Marcus-Hush theories with experiments. J. Am. Chem. Soc. 2003, 125, 3273-3283.
https://doi.org/10.1021/ja021152s

[27]. Esteves, P. M.; De M Carneiro, J. W.; Cardoso, S. P.; Barbosa, A. G. H.; Laali, K. K.; Rasul, G.; Prakash, G. K. S.; Olah, G. A. Unified mechanistic concept of electrophilic aromatic nitration: convergence of computational results and experimental data. J. Am. Chem. Soc. 2003, 125, 4836-4849.
https://doi.org/10.1021/ja021307w

[28]. Nieves-Quinones, Y.; Singleton, D. A. Dynamics and the regiochemistry of nitration of toluene. J. Am. Chem. Soc. 2016, 138, 15167-15176.
https://doi.org/10.1021/jacs.6b07328

[29]. Peluso, A.; Del Re, G. On the occurrence of an electron-transfer step in aromatic nitration. J. Phys. Chem. 1996, 100, 5303-5309.
https://doi.org/10.1021/jp9530156

[30]. Chen, L.; Xiao, H.; Xiao, J.; Gong, X. DFT study on nitration mechanism of benzene with nitronium ion. J. Phys. Chem. A 2003, 107, 11440-11444.
https://doi.org/10.1021/jp030167p

[31]. Parker, V. D.; Kar, T.; Bethell, D. The polar mechanism for the nitration of benzene with nitronium ion: ab initio structures of intermediates and transition states. J. Org. Chem. 2013, 78, 9522-9525.
https://doi.org/10.1021/jo401775u

[32]. Koleva, G.; Galabov, B.; Hadjieva, B.; Schaefer, H. F., 3rd; Schleyer, P. von R. An experimentally established key intermediate in benzene nitration with mixed acid. Angew. Chem. Int. Ed Engl. 2015, 54, 14123-14127.
https://doi.org/10.1002/anie.201506959

[33]. Liljenberg, M.; Stenlid, J. H.; Brinck, T. Mechanism and regioselectivity of electrophilic aromatic nitration in solution: the validity of the transition state approach. J. Mol. Model. 2017, 24, 15.
https://doi.org/10.1007/s00894-017-3561-z

[34]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 16, revision B0.1., Gaussian, Inc., Wallingford CT, 2004.

[35]. Henderson, T. M.; Izmaylov, A. F.; Scalmani, G.; Scuseria, G. E. Can short-range hybrids describe long-range-dependent properties? J. Chem. Phys. 2009, 131, 044108.
https://doi.org/10.1063/1.3185673

[36]. Galano, A.; Alvarez-Idaboy, J. R. Kinetics of radical-molecule reactions in aqueous solution: a benchmark study of the performance of density functional methods. J. Comput. Chem. 2014, 35, 2019-2026.
https://doi.org/10.1002/jcc.23715

[37]. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215-241.
https://doi.org/10.1007/s00214-007-0310-x

[38]. Shi, H. A solvent-catalyzed four-molecular two-path solvolysis mechanism of t-butyl chloride or bromide in water or alcohol derived by density functional theory calculation and confirmed by high-resolution electrospray ionization-mass spectrometry. React. Kinet. Mech. Catal. 2020, 129, 583-612.
https://doi.org/10.1007/s11144-020-01723-w

[39]. Fukui, K.; Yonezawa, T.; Shingu, H. A molecular orbital theory of reactivity in aromatic hydrocarbons. J. Chem. Phys. 1952, 20, 722-725.
https://doi.org/10.1063/1.1700523

[40]. Fukui, K.; Yonezawa, T.; Nagata, C.; Shingu, H. Molecular orbital theory of orientation in aromatic, heteroaromatic, and other conjugated molecules. J. Chem. Phys. 1954, 22, 1433-1442.
https://doi.org/10.1063/1.1740412

[41]. Fukui, K. Frontier orbitals and reaction paths: Selected papers of Kenichi Fukui: Selected papers of Kenichi Fukui; Fukui, K., Ed.; World Scientific Publishing: Singapore, Singapore, 1997.
https://doi.org/10.1142/2731

[42]. Coulson, C. A. Coulson 's Valence; 3rd ed.; Oxford University Press: London, England, 1979.

[43]. Barone, V.; Cossi, M.; Tomasi, J. Geometry optimization of molecular structures in solution by the polarizable continuum model. J. Comput. Chem. 1998, 19, 404-417.
https://doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W

[44]. Barone, V.; Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 1998, 102, 1995-2001.
https://doi.org/10.1021/jp9716997

[45]. Cancès, E.; Mennucci, B.; Tomasi, J. Analytical derivatives for geometry optimization in solvation continuum models. II. Numerical applications. J. Chem. Phys. 1998, 109, 260-266.
https://doi.org/10.1063/1.476559

[46]. Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999-3093.
https://doi.org/10.1021/cr9904009

[47]. Belson, D. J.; Strachan, A. N. Aromatic nitration in aqueous nitric acid. J Chem Soc Perkin Trans 2 1989, 15-19.
https://doi.org/10.1039/p29890000015

[48]. Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2006, 2, 364-382.
https://doi.org/10.1021/ct0502763

[49]. Zhou, X.; He, C.; Zhang, Z.; Cao, C. Experimental investigation on nitration of benzene at different molar ratio of sulfuric acid and nitric acid, J. Qinghai Univ. 2010, 2010 (4), 12-15.

[50]. Winkler, F. J. Reaction rates of isotopic molecules. VonL. Melander und W. H. saunders, Jr. Wiley, New York 1980. XIV, 391 S., geb. £ 16.30. Angew. Chem. Weinheim Bergstr. Ger. 1981, 93, 220-220.
https://doi.org/10.1002/ange.19810930231

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).