European Journal of Chemistry

Molecular and crystal structure characteristics of 2-phenylaminotetrahydro-1,3-thiazepine hydrochloride and 2-phenyliminohexahydro-1,3-thiazepine

Crossmark


Main Article Content

Mukhriddin Umirov
Alisher Eshimbetov
Jamshid Ashurov
Kambarali Turgunov
Khamid Khodjaniyazov

Abstract

The current research includes the synthesis and crystallographic characterization of 2-phenylaminotetrahydro-1,3-thiazepine hydrochloride (HPAT) and 2-phenyliminohexa- hydro-1,3-thiazepine (PIT) compounds. 2-Phenylaminotetrahydro-1,3-thiazepine hydro-chloride was synthesized by cyclization of 1-(4-hydroxybutyl)-3-phenylthiourea in an acidic condition. The second compound, 2-phenyliminohexahydro-1,3-thiazepine, was obtained by neutralizing 2-phenylaminotetrahydro-1,3-thiazepine hydrochloride with sodium hydrocarbonate. Both compounds were characterized by the single-crystal X-ray diffraction method. Crystal data for C11H17N2OClS (HPAT): orthorhombic, space group P212121 (no. 19), a = 4.97183(14) Å, b = 15.1169(4) Å, c = 17.7376(5) Å, = 1333.14(6) Å3, Z = 4, μ(CuKα) = 3.859 mm-1, Dcalc = 1.299 g/cm3, 9243 reflections measured (7.684° ≤ 2Θ ≤ 152.042°), 2749 unique (Rint = 0.0314, Rsigma = 0.0255) which were used in all calculations. The final R1 was 0.0351 (I > 2σ(I)) and wR2 was 0.0911 (all data). Crystal data for C11H14N2S (PIT): monoclinic, space group P21/n (no. 14), a = 9.6303(9) Å, b = 9.8938(6) Å, c = 11.5627(9) Å, β = 103.419(8)°, = 1071.62(14) Å3, Z = 4, μ(CuKα) = 2.357 mm-1, Dcalc = 1.279 g/cm3, 3938 reflections measured (10.798° ≤ 2Θ ≤ 152.328°), 2172 unique (Rint = 0.0288, Rsigma = 0.0330) that were used in all calculations. The final R1 was 0.0431 (I > 2σ(I)) and wR2 was 0.1219 (all data). The asymmetric unit of HPAT contains one protonated amine, one chlorine anion, and one water molecule. Chlorine anion and water molecules play the role of the bridge in chain formation along the a- and b-axis through H-bonds with N-H hydrogen atoms. Furthermore, the Hirshfeld surface analyses are performed to determine the nature of the intermolecular contacts stabilizing the crystal structures of 2-phenylaminotetrahydro-1,3-thiazepine hydrochloride and 2-phenyliminohexahydro-1,3-thiazepine.


icon graph This Abstract was viewed 396 times | icon graph Article PDF downloaded 106 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Umirov, M.; Eshimbetov, A.; Ashurov, J.; Turgunov, K.; Khodjaniyazov, K. Molecular and Crystal Structure Characteristics of 2-Phenylaminotetrahydro-1,3-Thiazepine Hydrochloride and 2-Phenyliminohexahydro-1,3-Thiazepine. Eur. J. Chem. 2023, 14, 9-15.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Remko, M.; Walsh, O. A.; Richards, W. G. Ab initio and DFT study of molecular structure and tautomerism of 2-amino-2-imidazoline, 2-amino-2-oxazoline and 2-amino-2-thiazoline. Chem. Phys. Lett. 2001, 336, 156-162.
https://doi.org/10.1016/S0009-2614(01)00104-X

[2]. Shishkin, O. V.; Konovalova, I. S.; Zubatyuk, R. I.; Palamarchuk, G. V.; Shishkina, S. V.; Biitseva, A. V.; Rudenko, I. V.; Tkachuk, V. A.; Kornilov, M. Y.; Hordiyenko, O. V.; Leszczynski, J. Remarkably strong polarization of amidine fragment in the crystals of 1-imino-1H-isoindol-3-amine. Struct. Chem. 2013, 24, 1089-1097.
https://doi.org/10.1007/s11224-012-0131-y

[3]. Aly, A. A.; Brase, S.; Gomaa, M. A.-M. Amidines: their synthesis, reactivity, and applications in heterocyclic synthesis. ARKIVOC 2018, 2018, 85-138.
https://doi.org/10.24820/ark.5550190.p010.607

[4]. Sondhi, S. M.; Rani, R.; Gupta, P. P.; Agrawal, S. K.; Saxena, A. K. Synthesis, anticancer, and anti-inflammatory activity evaluation of methanesulfonamide and amidine derivatives of 3,4-diaryl-2-imino-4-thiazolines. Mol. Divers. 2009, 13, 357-366.
https://doi.org/10.1007/s11030-009-9125-0

[5]. Toldy, L. G. Biologically active heterocyclic analogs of thiourea (review). Chem. Heterocycl. Compd. (N. Y.) 1978, 14, 705-714.
https://doi.org/10.1007/BF00471632

[6]. Eshimbetov, A.; Adizov, S.; Kaur, I.; Reymov, A. Is it possible to differentiate between 2-phenylaminodihydro-1,3-thiazine from 2-phenyliminotetrahydro-1,3-thiazine by spectral methods? New glance to the old problem. Eur. J. Chem. 2021, 12, 77-80.
https://doi.org/10.5155/eurjchem.12.1.77-80.2068

[7]. Ambartsumova, R. F.; Levkovich, M. G.; Mil'grom, E. G.; Abdullaev, N. D. 1,3-Thiazepines. 1. Synthesis and spectral properties of 2-imino hexahydro-1,3-thiazepines. Chem. Heterocycl. Compd. (N. Y.) 1997, 33, 112-117.
https://doi.org/10.1007/BF02290757

[8]. Ambartsumova, R. F.; Tashkhodzhaev, B.; Makhmulov, M. K. 1,3-Thiazepines: 4. Reactions of 2-iminothiazepines with methyl acrylate. Crystal and molecular structure of 2-phenylimino-3-(β-methoxy carbonylethyl)- and 2-benzyliminohexahydro-1,3-thiadiazepines. Chem. Heterocycl. Compd. (N. Y.) 1997, 33, 475-480.
https://doi.org/10.1007/BF02321396

[9]. Levkovich, M. G.; Abdullaev, N. D.; Ambartsumova, R. F. 1,3-Thiazepines. 5. Study of 2-Phenyl(benzyl)iminohexahydro-1,3-thiazepines and Their Derivatives by 13C Spectroscopy. Chem. Heterocycl. Compd. (N. Y.) 2002, 38, 612-615.

[10]. Kristallovich, E. L.; Eshimbetov, A. G.; Ambartsumova, R. F. 1,3-Thiazepines. 6. UV Spectroscopic and Theoretical Study of the Electronic Structures of 2-Aminotetrahydro- and 2-Iminotetrahydro-1,3-thiazepines. Chem. Heterocycl. Compd. (N. Y.) 2003, 39, 368-373.

[11]. Olszenko-Piontkowa, Z.; Urbanski, T. 1-Thia-3-azacycloheptane derivatives. Org. Prep. Proced. Int. 1971, 3, 27-32.
https://doi.org/10.1080/00304947109356027

[12]. Levkovich, M. G.; Abdullaev, N. D.; Ambartsumova, R. F. 1,3-Thiazepines. 3.* Conformational dynamics of 2-aminotetrahydro and 2-iminohexahydro derivatives of 1,3-thiazepine. J. Struct. Chem. 1997, 38, 497-499.
https://doi.org/10.1007/BF02763619

[13]. Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171-179.
https://doi.org/10.1107/S2052520616003954

[14]. Kieć-Kononowicz, K.; Karolak-Wojciechowska, J.; Michalak, B.; Pekala, E.; Schumacher, B.; Müller, C. E. Imidazo[2,1-b]thiazepines: synthesis, structure and evaluation of benzodiazepine receptor binding. Eur. J. Med. Chem. 2004, 39, 205-218.
https://doi.org/10.1016/j.ejmech.2003.11.009

[15]. Kieć-Kononowicz, K.; Zatorski, A.; Karolak-wojciechowska, J. Reaction of 5,5-diphenyl-2-thiohydantoin with 1,4-dibromobutane. The crystal and molecular structure of 2,3,4,5-tetrahydro-7,7-diphenylimidazo-[2,1-b]-thiazepine-8(7H)-one. Phosphorus Sulfur Silicon Relat. Elem. 1989, 42, 191-200.
https://doi.org/10.1080/10426508908054895

[16]. Moussaif, A.; Essassi, E. M.; Pierrot, M. 2,3,4,5-Tetrahydro-1,3-thiazepino[3,2-a][1,3]benzimidazole. Acta Crystallogr. Sect. E Struct. Rep. Online 2001, 57, o364-o365.
https://doi.org/10.1107/S1600536801004913

[17]. Geng, X.; Liu, S.; Wang, W.; Qu, J.; Wang, B. Tert-amino effect-promoted rearrangement of aryl isothiocyanate: A versatile approach to benzimidazothiazepines and benzimidazothioethers. J. Org. Chem. 2020, 85, 12635-12643.
https://doi.org/10.1021/acs.joc.0c01806

[18]. Struga, M.; Kossakowski, J.; Miroslaw, B.; Koziol, A. E.; Zimniak, A. Synthesis of new 1,3-thiazepine derivatives. J. Heterocycl. Chem. 2009, 46, 298-302.
https://doi.org/10.1002/jhet.44

[19]. Struga, M.; Kossakowski, J.; Koziol, A. E.; Kedzierska, E.; Fidecka, S.; La Colla, P.; Ibba, C.; Collu, G.; Sanna, G.; Secci, B.; Loddo, R. Synthesis, pharmacological and antiviral activity of 1,3-thiazepine derivatives. Eur. J. Med. Chem. 2009, 44, 4960-4969.
https://doi.org/10.1016/j.ejmech.2009.08.013

[20]. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.

[21]. Sheldrick, G. M. SHELXT - integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3-8.
https://doi.org/10.1107/S2053273314026370

[22]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.
https://doi.org/10.1107/S0021889808042726

[23]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[24]. Bruker, AXS Inc., "SHELXTL. Version 6.10, XP" Bruker AXS Inc., Madison, 2000.

[25]. Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226-235.
https://doi.org/10.1107/S1600576719014092

[26]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006-1011.
https://doi.org/10.1107/S1600576721002910

[27]. Spackman, M. A.; McKinnon, J. J.; Jayatilaka, D. Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals. CrystEngComm 2008, 10, 377-388.
https://doi.org/10.1039/b715227b

[28]. Spackman, M. A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19-32.
https://doi.org/10.1039/B818330A

[29]. Minaeva, V. A.; Karaush-Karmazin, N. N.; Panchenko, A. A.; Heleveria, D. N.; Minaev, B. F. Hirshfeld surfaces analysis and DFT study of the structure and IR spectrum of N-ethyl-2-amino-1-(4-chlorophenyl) propan-1-one (4-CEC) hydrochloride. Comput. Theor. Chem. 2021, 1205, 113455.
https://doi.org/10.1016/j.comptc.2021.113455

[30]. Spackman, M. A.; McKinnon, J. J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378-392.
https://doi.org/10.1039/B203191B

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).