

Molecular and crystal structure characteristics of 2-phenylaminotetrahydro-1,3-thiazepine hydrochloride and 2-phenyliminohexahydro-1,3-thiazepine
Mukhriddin Umirov (1)





(1) Department of Chemistry of Natural Compounds, Faculty of Chemistry, National University of Uzbekistan, Tashkent, 100174, Uzbekistan
(2) Laboratory of Complex Compounds, Institute of Bioorganic Chemistry, Uzbek Academy of Sciences, Tashkent, 100125, Uzbekistan
(3) Laboratory of Complex Compounds, Institute of Bioorganic Chemistry, Uzbek Academy of Sciences, Tashkent, 100125, Uzbekistan
(4) Laboratory of Physical Methods of Research, Institute of The Chemistry of Plant Substances, Uzbek Academy of Sciences, Tashkent, 100170, Uzbekistan
(5) Laboratory of Complex Compounds, Institute of Bioorganic Chemistry, Uzbek Academy of Sciences, Tashkent, 100125, Uzbekistan
(*) Corresponding Author
Received: 15 Sep 2022 | Revised: 18 Oct 2022 | Accepted: 21 Oct 2022 | Published: 31 Mar 2023 | Issue Date: March 2023
Abstract
The current research includes the synthesis and crystallographic characterization of 2-phenylaminotetrahydro-1,3-thiazepine hydrochloride (HPAT) and 2-phenyliminohexa- hydro-1,3-thiazepine (PIT) compounds. 2-Phenylaminotetrahydro-1,3-thiazepine hydro-chloride was synthesized by cyclization of 1-(4-hydroxybutyl)-3-phenylthiourea in an acidic condition. The second compound, 2-phenyliminohexahydro-1,3-thiazepine, was obtained by neutralizing 2-phenylaminotetrahydro-1,3-thiazepine hydrochloride with sodium hydrocarbonate. Both compounds were characterized by the single-crystal X-ray diffraction method. Crystal data for C11H17N2OClS (HPAT): orthorhombic, space group P212121 (no. 19), a = 4.97183(14) Å, b = 15.1169(4) Å, c = 17.7376(5) Å, V = 1333.14(6) Å3, Z = 4, μ(CuKα) = 3.859 mm-1, Dcalc = 1.299 g/cm3, 9243 reflections measured (7.684° ≤ 2Θ ≤ 152.042°), 2749 unique (Rint = 0.0314, Rsigma = 0.0255) which were used in all calculations. The final R1 was 0.0351 (I > 2σ(I)) and wR2 was 0.0911 (all data). Crystal data for C11H14N2S (PIT): monoclinic, space group P21/n (no. 14), a = 9.6303(9) Å, b = 9.8938(6) Å, c = 11.5627(9) Å, β = 103.419(8)°, V = 1071.62(14) Å3, Z = 4, μ(CuKα) = 2.357 mm-1, Dcalc = 1.279 g/cm3, 3938 reflections measured (10.798° ≤ 2Θ ≤ 152.328°), 2172 unique (Rint = 0.0288, Rsigma = 0.0330) that were used in all calculations. The final R1 was 0.0431 (I > 2σ(I)) and wR2 was 0.1219 (all data). The asymmetric unit of HPAT contains one protonated amine, one chlorine anion, and one water molecule. Chlorine anion and water molecules play the role of the bridge in chain formation along the a- and b-axis through H-bonds with N-H hydrogen atoms. Furthermore, the Hirshfeld surface analyses are performed to determine the nature of the intermolecular contacts stabilizing the crystal structures of 2-phenylaminotetrahydro-1,3-thiazepine hydrochloride and 2-phenyliminohexahydro-1,3-thiazepine.
Announcements
Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.
1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).
2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).
3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.14.1.9-15.2345
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


References
[1]. Remko, M.; Walsh, O. A.; Richards, W. G. Ab initio and DFT study of molecular structure and tautomerism of 2-amino-2-imidazoline, 2-amino-2-oxazoline and 2-amino-2-thiazoline. Chem. Phys. Lett. 2001, 336, 156-162.
https://doi.org/10.1016/S0009-2614(01)00104-X
[2]. Shishkin, O. V.; Konovalova, I. S.; Zubatyuk, R. I.; Palamarchuk, G. V.; Shishkina, S. V.; Biitseva, A. V.; Rudenko, I. V.; Tkachuk, V. A.; Kornilov, M. Y.; Hordiyenko, O. V.; Leszczynski, J. Remarkably strong polarization of amidine fragment in the crystals of 1-imino-1H-isoindol-3-amine. Struct. Chem. 2013, 24, 1089-1097.
https://doi.org/10.1007/s11224-012-0131-y
[3]. Aly, A. A.; Brase, S.; Gomaa, M. A.-M. Amidines: their synthesis, reactivity, and applications in heterocyclic synthesis. ARKIVOC 2018, 2018, 85-138.
https://doi.org/10.24820/ark.5550190.p010.607
[4]. Sondhi, S. M.; Rani, R.; Gupta, P. P.; Agrawal, S. K.; Saxena, A. K. Synthesis, anticancer, and anti-inflammatory activity evaluation of methanesulfonamide and amidine derivatives of 3,4-diaryl-2-imino-4-thiazolines. Mol. Divers. 2009, 13, 357-366.
https://doi.org/10.1007/s11030-009-9125-0
[5]. Toldy, L. G. Biologically active heterocyclic analogs of thiourea (review). Chem. Heterocycl. Compd. (N. Y.) 1978, 14, 705-714.
https://doi.org/10.1007/BF00471632
[6]. Eshimbetov, A.; Adizov, S.; Kaur, I.; Reymov, A. Is it possible to differentiate between 2-phenylaminodihydro-1,3-thiazine from 2-phenyliminotetrahydro-1,3-thiazine by spectral methods? New glance to the old problem. Eur. J. Chem. 2021, 12, 77-80.
https://doi.org/10.5155/eurjchem.12.1.77-80.2068
[7]. Ambartsumova, R. F.; Levkovich, M. G.; Mil'grom, E. G.; Abdullaev, N. D. 1,3-Thiazepines. 1. Synthesis and spectral properties of 2-imino hexahydro-1,3-thiazepines. Chem. Heterocycl. Compd. (N. Y.) 1997, 33, 112-117.
https://doi.org/10.1007/BF02290757
[8]. Ambartsumova, R. F.; Tashkhodzhaev, B.; Makhmulov, M. K. 1,3-Thiazepines: 4. Reactions of 2-iminothiazepines with methyl acrylate. Crystal and molecular structure of 2-phenylimino-3-(β-methoxy carbonylethyl)- and 2-benzyliminohexahydro-1,3-thiadiazepines. Chem. Heterocycl. Compd. (N. Y.) 1997, 33, 475-480.
https://doi.org/10.1007/BF02321396
[9]. Levkovich, M. G.; Abdullaev, N. D.; Ambartsumova, R. F. 1,3-Thiazepines. 5. Study of 2-Phenyl(benzyl)iminohexahydro-1,3-thiazepines and Their Derivatives by 13C Spectroscopy. Chem. Heterocycl. Compd. (N. Y.) 2002, 38, 612-615.
[10]. Kristallovich, E. L.; Eshimbetov, A. G.; Ambartsumova, R. F. 1,3-Thiazepines. 6. UV Spectroscopic and Theoretical Study of the Electronic Structures of 2-Aminotetrahydro- and 2-Iminotetrahydro-1,3-thiazepines. Chem. Heterocycl. Compd. (N. Y.) 2003, 39, 368-373.
[11]. Olszenko-Piontkowa, Z.; Urbanski, T. 1-Thia-3-azacycloheptane derivatives. Org. Prep. Proced. Int. 1971, 3, 27-32.
https://doi.org/10.1080/00304947109356027
[12]. Levkovich, M. G.; Abdullaev, N. D.; Ambartsumova, R. F. 1,3-Thiazepines. 3.* Conformational dynamics of 2-aminotetrahydro and 2-iminohexahydro derivatives of 1,3-thiazepine. J. Struct. Chem. 1997, 38, 497-499.
https://doi.org/10.1007/BF02763619
[13]. Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171-179.
https://doi.org/10.1107/S2052520616003954
[14]. Kieć-Kononowicz, K.; Karolak-Wojciechowska, J.; Michalak, B.; Pekala, E.; Schumacher, B.; Müller, C. E. Imidazo[2,1-b]thiazepines: synthesis, structure and evaluation of benzodiazepine receptor binding. Eur. J. Med. Chem. 2004, 39, 205-218.
https://doi.org/10.1016/j.ejmech.2003.11.009
[15]. Kieć-Kononowicz, K.; Zatorski, A.; Karolak-wojciechowska, J. Reaction of 5,5-diphenyl-2-thiohydantoin with 1,4-dibromobutane. The crystal and molecular structure of 2,3,4,5-tetrahydro-7,7-diphenylimidazo-[2,1-b]-thiazepine-8(7H)-one. Phosphorus Sulfur Silicon Relat. Elem. 1989, 42, 191-200.
https://doi.org/10.1080/10426508908054895
[16]. Moussaif, A.; Essassi, E. M.; Pierrot, M. 2,3,4,5-Tetrahydro-1,3-thiazepino[3,2-a][1,3]benzimidazole. Acta Crystallogr. Sect. E Struct. Rep. Online 2001, 57, o364-o365.
https://doi.org/10.1107/S1600536801004913
[17]. Geng, X.; Liu, S.; Wang, W.; Qu, J.; Wang, B. Tert-amino effect-promoted rearrangement of aryl isothiocyanate: A versatile approach to benzimidazothiazepines and benzimidazothioethers. J. Org. Chem. 2020, 85, 12635-12643.
https://doi.org/10.1021/acs.joc.0c01806
[18]. Struga, M.; Kossakowski, J.; Miroslaw, B.; Koziol, A. E.; Zimniak, A. Synthesis of new 1,3-thiazepine derivatives. J. Heterocycl. Chem. 2009, 46, 298-302.
https://doi.org/10.1002/jhet.44
[19]. Struga, M.; Kossakowski, J.; Koziol, A. E.; Kedzierska, E.; Fidecka, S.; La Colla, P.; Ibba, C.; Collu, G.; Sanna, G.; Secci, B.; Loddo, R. Synthesis, pharmacological and antiviral activity of 1,3-thiazepine derivatives. Eur. J. Med. Chem. 2009, 44, 4960-4969.
https://doi.org/10.1016/j.ejmech.2009.08.013
[20]. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
[21]. Sheldrick, G. M. SHELXT - integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3-8.
https://doi.org/10.1107/S2053273314026370
[22]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.
https://doi.org/10.1107/S0021889808042726
[23]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218
[24]. Bruker, AXS Inc., "SHELXTL. Version 6.10, XP" Bruker AXS Inc., Madison, 2000.
[25]. Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226-235.
https://doi.org/10.1107/S1600576719014092
[26]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006-1011.
https://doi.org/10.1107/S1600576721002910
[27]. Spackman, M. A.; McKinnon, J. J.; Jayatilaka, D. Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals. CrystEngComm 2008, 10, 377-388.
https://doi.org/10.1039/b715227b
[28]. Spackman, M. A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19-32.
https://doi.org/10.1039/B818330A
[29]. Minaeva, V. A.; Karaush-Karmazin, N. N.; Panchenko, A. A.; Heleveria, D. N.; Minaev, B. F. Hirshfeld surfaces analysis and DFT study of the structure and IR spectrum of N-ethyl-2-amino-1-(4-chlorophenyl) propan-1-one (4-CEC) hydrochloride. Comput. Theor. Chem. 2021, 1205, 113455.
https://doi.org/10.1016/j.comptc.2021.113455
[30]. Spackman, M. A.; McKinnon, J. J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378-392.
https://doi.org/10.1039/B203191B
Supporting information
The Supplementary Material for this article can be found online at: Supplementary files
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.14.1.9-15.2345

















European Journal of Chemistry 2023, 14(1), 9-15 | doi: https://doi.org/10.5155/eurjchem.14.1.9-15.2345 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.