European Journal of Chemistry

Influence of Mg(II) substitution on the structural, magnetic, and permeability properties of R-type hexagonal ferrites


Main Article Content

Zahoor Ul Hassan
Imran Sadiq
Hasan Mehmood Khan
Sajjad Hussain
Farhan Sadiq
Mishal Idrees
Muhammad Shahbaz
Samreen Saeed
Muhammad Imran
Saira Riaz
Shahzad Naseem


A series of single-phase R-type hexagonal ferrites with the composition Sr1-xMgxFe4Sn2O11 (x = 0.0, 0.1, 0.2, 0.3) were manufactured using the auto-combustion sol-gel method sintered at 800 °C. The objective of this work was to study the effect of Mg additives on the structural, magnetic, and permeability properties of the synthesised material. The X-ray diffraction patterns revealed that all prepared samples have hexagonal structures. The scanning electron micrographs revealed the platelet-like structure of the grains, which would help enhance the magnetic permeability of the materials. Magnetic parameters were investigated in the range of applied field ±12.5 kOe. The hysteresis loops revealed the paramagnetic nature of all the synthesised samples. With the substitution of Mg contents, the maximum magnetization increased from 1.05 to 2.62 (emu/g) and the remanence from 0.02-0.09 (emu/g), while the coercivity also increased. The magnetic permeability was determined over the frequency range of 20 Hz to 20 MHz. The magnetic permeability of the synthesized hexagonal ferrites is enhanced due to the presence of grains having a platelet-like structure. Furthermore, the particle size calculated using Langevin equations varied in the range of 4.7 to 6.5 nm. The calculated magnetic permeability properties make this synthesised ferrite material useful for super-high-frequency devices.

icon graph This Abstract was viewed 1306 times | icon graph Article PDF downloaded 194 times

How to Cite
Hassan, Z. U.; Sadiq, I.; Khan, H. M.; Hussain, S.; Sadiq, F.; Idrees, M.; Shahbaz, M.; Saeed, S.; Imran, M.; Riaz, S. Influence of Mg(II) Substitution on the Structural, Magnetic, and Permeability Properties of R-Type Hexagonal Ferrites. Eur. J. Chem. 2023, 14, 165-171.

Article Details

Crossref - Scopus - Google - European PMC

[1]. Hiratsuka, N. Soft magnetic hexagonal ferrites for high frequency devices. J. Magn. Soc. Jpn. 2013, 37, 141-146.

[2]. Yousaf, M.; Nazir, S.; Hayat, Q.; Akhtar, M. N.; Akbar, M.; Lu, Y.; Noor, A.; Zhang, J.-M.; Shah, M. A. K. Y.; Wang, B. Magneto-optical properties and physical characteristics of M-type hexagonal ferrite (Ba1-xCaxFe11.4Al0.6O19) nanoparticles (NPs). Ceram. Int. 2021, 47, 11668-11676.

[3]. Vaingankar, A. S.; Kulkarni, S. G.; Sagare, M. S. Humidity Sensing using Soft Ferrites. J. Phys. IV 1997, 07, C1-155-C1-156.

[4]. Gerber, R.; Atkinson, R.; Šimša, Z. Magnetism and magneto-optics of hexaferrite layers. J. Magn. Magn. Mater. 1997, 175, 79-89.

[5]. Singh, J.; Singh, C.; Kaur, D.; Narang, S. B.; Jotania, R. B.; Ateia, E.; Kagdi, A.; Joshi, R.; Sombra, A. S. B.; Zhou, D.; Trukhanov, S.; Panina, L. Development of doped Ba-Sr hexagonal ferrites for microwave absorber applications: Structural characterization, tunable thickness, absorption peaks and electromagnetic parameters. J. Alloys Compd. 2021, 855, 157242.

[6]. Kumar, A.; Agarwala, V.; Singh, D. Effect of mg substitution on microwave absorption of BaFe12O19. Adv. Mat. Res. 2012, 585, 62-66.

[7]. Amjad, T.; Sadiq, I.; Javaid, A. B.; Riaz, S.; Naseem, S.; Nadeem, M. Investigation of structural, electrical, electrical polarization and dielectric properties of CTAB assisted Ni2+ substituted R-type nano-hexaferrites. J. Alloys Compd. 2019, 770, 1112-1118.

[8]. Kagdi, A. R.; Solanki, N. P.; Carvalho, F. E.; Meena, S. S.; Bhatt, P.; Pullar, R. C.; Jotania, R. B. Influence of Mg substitution on structural, magnetic and dielectric properties of X-type barium zinc hexaferrites Ba2Zn2-xMgxFe28O46. J. Alloys Compd. 2018, 741, 377-391.

[9]. Shahbaz, M.; Sadiq, I.; Butt, M. M. H.; Basit Javaid, A.; Idrees, M.; Hussain, S.; Sadiq, F.; Riaz, S.; Naseem, S.; Khan, H. M. Peculiar magnetic behavior and structural, electrical, dielectric properties of substituted R-type hexagonal ferrites. J. Magn. Magn. Mater. 2020, 499, 166309.

[10]. Rana, G.; Johri, U. C.; Asokan, K. Correlation between structural and dielectric properties of Ni-substituted magnetite nanoparticles. EPL 2013, 103, 17008.

[11]. Mammo, T. W.; Murali, N.; Kumari, C. V.; Margarette, S. J.; Ramakrishna, A.; Vemuri, R.; Shankar Rao, Y. B.; Vijaya Prasad, K. L.; Ramakrishna, Y.; Samatha, K. Synthesis, structural, dielectric and magnetic properties of cobalt ferrite nanomaterial prepared by sol-gel autocombustion technique. Physica B Condens. Matter 2020, 581, 411769.

[12]. Iqbal, M. J.; Ashiq, M. N.; Gomez, P. H. Effect of doping of Zr-Zn binary mixtures on structural, electrical and magnetic properties of Sr-hexaferrite nanoparticles. J. Alloys Compd. 2009, 478, 736-740.

[13]. Hussain, S.; Sadiq, I.; Khan, H. M.; Idrees, M.; Sadiq, F.; Shah, A.; Riaz, S.; Naseem, S. Characterization and curve fittings of Mg+2 substituted R-type hexagonal ferrites. Physica B Condens. Matter 2021, 605, 412642.

[14]. Pullar, R. C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 2012, 57, 1191-1334.

[15]. Tatarchuk, T. R.; Paliychuk, N. D.; Bououdina, M.; Al-Najar, B.; Pacia, M.; Macyk, W.; Shyichuk, A. Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloys Compd. 2018, 731, 1256-1266.

[16]. Narang, S. B.; Singh, C.; Bai, Y.; Hudiara, I. S. Microstructure, hysteresis and microwave absorption analysis of Ba(1−x)SrxFe12O19 ferrite. Mater. Chem. Phys. 2008, 111, 225-231.

[17]. Fonseca, F. C.; Goya, G. F.; Jardim, R. F.; Muccillo, R.; Carreño, N. L. V.; Longo, E.; Leite, E. R. Superparamagnetism and magnetic properties of Ni nanoparticles embedded inSiO2. Phys. Rev. B Condens. Matter 2002, 66, 104406.

[18]. Drofenik, M.; Ban, I.; Makovec, D.; Žnidaršič, A.; Jagličić, Z.; Hanžel, D.; Lisjak, D. The hydrothermal synthesis of super-paramagnetic barium hexaferrite particles. Mater. Chem. Phys. 2011, 127, 415-419.

[19]. Shams, M. H.; Salehi, S. M. A.; Ghasemi, A. Electromagnetic wave absorption characteristics of Mg-Ti substituted Ba-hexaferrite. Mater. Lett. 2008, 62, 1731-1733.

[20]. Ibrahim, I. R.; Hashim, M.; Nazlan, R.; Ismail, I.; Wan Ab Rahman, W. N.; Abdullah, N. H.; Mohd Idris, F.; Shafie, M. S. E.; Muhamad Zulkimi, M. M. Grouping trends of magnetic permeability components in their parallel evolution with microstructure in Ni0.3Zn0.7Fe2O4. J. Magn. Magn. Mater. 2014, 355, 265-275.

[21]. Goldman, A. Handbook of modern ferromagnetic materials; 1999th ed.; Springer: New York, NY, 2012.

[22]. Widanarto, W.; Effendi, M.; Ghoshal, S. K.; Kurniawan, C.; Handoko, E.; Alaydrus, M. Bio-silica incorporated barium ferrite composites: Evaluation of structure, morphology, magnetic and microwave absorption traits. Curr. Appl. Phys. 2020, 20, 638-642.

[23]. Stergiou, C. A.; Litsardakis, G. Y-type hexagonal ferrites for microwave absorber and antenna applications. J. Magn. Magn. Mater. 2016, 405, 54-61.

[24]. Soman, V. V.; Nanoti, V. M.; Kulkarni, D. K. Dielectric and magnetic properties of Mg-Ti substituted barium hexaferrite. Ceram. Int. 2013, 39, 5713-5723.

[25]. Amin, M.; Rafique, H. M.; Mustafa, G. M.; Mahmood, A.; Ramay, S. M.; Atiq, S.; Ali, S. M. Effect of La/Cr co-doping on dielectric dispersion of phase pure BiFeO3 nanoparticles for high frequency applications. J. Mater. Res. Technol. 2021, 13, 1534-1545.

[26]. Mruczkiewicz, M.; Krawczyk, M.; Mikhaylovskiy, R. V.; Kruglyak, V. V. Towards high-frequency negative permeability using magnonic crystals in metamaterial design. Phys. Rev. B Condens. Matter Mater. Phys. 2012, 86, 024425.

Supporting Agencies

Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, 54590, Pakistan.
Most read articles by the same author(s)

Dimensions - Altmetric - scite_ - PlumX

Downloads and views


Download data is not yet available.


Metrics Loading ...
License Terms

License Terms


Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).