European Journal of Chemistry

A hydroxypropiophenone-based fluorescent probe for the selective determination of Al(III) ions in aqueous ethanol

Crossmark


Main Article Content

Chandni Singh
Divya Pratap Singh
Sunil Kumar Singh
Romi Dwivedi
Ashish Kumar Singh
Vinod Prasad Singh

Abstract

In this work, we have synthesized a novel dihydrazone-based fluorescent probe N'1,N'2-bis{1-(2-hydroxyphenyl)propylidene}oxalohydrazide (H2hpoh)for Al3+ ions by a simple condensation reaction. The prepared organic probe has been characterized by different physicochemical and spectroscopic techniques. The single-crystal structure of the receptor has also been reported. Crystal data for C20H22N4O4: monoclinic, space group P21/c (no. 14), a = 6.0747(15) Å, b = 11.621(5) Å, c = 13.453(4) Å, β = 94.61(3)°, = 946.6(5) Å3, Z = 2, T = 293(2) K, μ(MoKα) = 0.096 mm-1, Dcalc = 1.342 g/cm3, 4046 reflections measured (6.076° ≤ 2Θ ≤ 58.05°), 2149 unique (Rint = 0.0876, Rsigma = 0.2223) which were used in all calculations. The final R1 was 0.0972 (I > 2σ(I)) and wR2 was 0.2316 (all data). The ethanolic aqueous solution of the probe shows enhanced fluorescence in the presence of Al3+ ions, whereas no appreciable change in the spectral pattern is observed in the presence of other cations, i.e., Na+, K+, Ca2+, Ba2+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cr3+, Cd2+ and Hg2+. The binding mode of the receptor with Al3+ ions was studied using various spectral titration techniques such as UV-visible, fluorescence, and 1H NMR. The receptor acts as a dibasic hexadentate ligand and interacts with two Al3+ ions with a high binding constant KB = 8.99×1010 1/M. The lowest detection limit for the Al3+ complex of H2hpoh was determined to be 7.8×10−5 M. With the help of DFT calculations, the mechanism of fluorescence enhancement has been explained.


icon graph This Abstract was viewed 616 times | icon graph Article PDF downloaded 317 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Singh, C.; Singh, D. P.; Singh, S. K.; Dwivedi, R.; Singh, A. K.; Singh, V. P. A Hydroxypropiophenone-Based Fluorescent Probe for the Selective Determination of Al(III) Ions in Aqueous Ethanol. Eur. J. Chem. 2023, 14, 99-108.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Roy, P. Recent advances in the development of fluorescent chemosensors for Al3. Dalton Trans. 2021, 50, 7156-7165.
https://doi.org/10.1039/D1DT00901J

[2]. Gupta, A.; Kumar, N. A review of mechanisms for fluorescent '"turn-on"' probes to detect Al3+ ions. RSC Adv. 2016, 6, 106413-106434.
https://doi.org/10.1039/C6RA23682K

[3]. Li, B.; He, T.; Fan, Y.; Yuan, X.; Qiu, H.; Yin, S. Recent developments in the construction of metallacycle/metallacage-cored supramolecular polymers via hierarchical self-assembly. Chem. Commun. (Camb.) 2019, 55, 8036-8059.
https://doi.org/10.1039/C9CC02472G

[4]. He, L.; Dong, B.; Liu, Y.; Lin, W. Fluorescent chemosensors manipulated by dual/triple interplaying sensing mechanisms. Chem. Soc. Rev. 2016, 45, 6449-6461.
https://doi.org/10.1039/C6CS00413J

[5]. Das, S.; Dutta, M.; Das, D. Fluorescent probes for selective determination of trace level Al3+: recent developments and future prospects. Anal. Methods 2013, 5, 6262-6285.
https://doi.org/10.1039/c3ay40982a

[6]. Hwang, I. H.; Choi, Y. W.; Kim, K. B.; Park, G. J.; Lee, J. J.; Nguyen, L.; Noh, I.; Kim, C. A highly selective and sensitive fluorescent turn-on Al3+ chemosensor in aqueous media and living cells: experimental and theoretical studies. New J Chem 2016, 40, 171-178.
https://doi.org/10.1039/C5NJ02334C

[7]. Alici, O.; Aydin, D. A Schiff-base receptor based on phenolphthalein derivate appended 2-furoic hydrazide: Highly sensitive fluorogenic "turn on" chemosensor for Al3+. J. Photochem. Photobiol. A Chem. 2021, 404, 112876.
https://doi.org/10.1016/j.jphotochem.2020.112876

[8]. Na, N.; Wang, F.; Huang, J.; Niu, C.; Yang, C.; Shang, Z.; Han, F.; Ouyang, J. An aggregation-induced emission-based fluorescent chemosensor of aluminium ions. RSC Adv. 2014, 4, 35459-35462.
https://doi.org/10.1039/C4RA05095A

[9]. Maity, D.; Govindaraju, T. A differentially selective sensor with fluorescence turn-on response to Zn2+ and dual-mode ratiometric response to Al3+ in aqueous media. Chem. Commun. (Camb.) 2012, 48, 1039-1041.
https://doi.org/10.1039/C1CC16064H

[10]. Sahana, S.; Bose, S.; Mukhopadhyay, S. K.; Bharadwaj, P. K. A highly selective and sensitive turn-on fluorescence chemosensor based on a rhodamine-adenine conjugate for Al 3+ in aqueous medium: Bio-imaging and DFT studies. J. Lumin. 2016, 169, 334-341.
https://doi.org/10.1016/j.jlumin.2015.09.009

[11]. Ghanbari, B.; Zarepour-jevinani, M. Promotional effect of macro cyclization in O2Nx naphtha-aza-crown macrocyclic ligands on fluorescence chemosensing of Al(III). J. Lumin. 2019, 205, 219-227.
https://doi.org/10.1016/j.jlumin.2018.09.014

[12]. Wang, M.; Lu, L.; Song, W.; Wang, X.; Sun, T.; Zhu, J.; Wang, J. AIE-active Schiff base compounds as fluorescent probe for the highly sensitive and selective detection of Al3+ ions. J. Lumin. 2021, 233, 117911.
https://doi.org/10.1016/j.jlumin.2021.117911

[13]. Maity, D.; Dey, S.; Roy, P. A two-pocket Schiff-base molecule as a chemosensor for Al3+. New J Chem 2017, 41, 10677-10685.
https://doi.org/10.1039/C7NJ02067H

[14]. Feng, S.; Pei, F.; Wu, Y.; Lv, J.; Hao, Q.; Yang, T.; Tong, Z.; Lei, W. A ratiometric fluorescent sensor based on g-CNQDs@Zn-MOF for the sensitive detection of riboflavin via FRET. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 246, 119004.
https://doi.org/10.1016/j.saa.2020.119004

[15]. Lv, J.; Feng, S.; Ding, Y.; Chen, C.; Zhang, Y.; Lei, W.; Hao, Q.; Chen, S.-M. A high-performance fluorescent probe for dopamine detection based on g-C3N4 nanofibers. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 212, 300-307.
https://doi.org/10.1016/j.saa.2019.01.010

[16]. Peng, H.-N.; Liu, Y.-Q.; Huang, J.-Q.; Huang, S.-S.; Cai, X.-P.; Xu, S.-J.; Huang, A.; Zeng, Q.; Xu, M. A simple fluorescent probe for selective detection of Al3+ based on furan Schiff base and its crystal structure. J. Mol. Struct. 2021, 1229, 129866.
https://doi.org/10.1016/j.molstruc.2020.129866

[17]. Kumar, M.; Kumar, A.; Kishor, S.; Kumar, S.; Kumar, A.; Manav, N.; Bhagi, A. K.; Kumar, S.; John, R. P. N-diethylaminosalicylidene based "turn-on" fluorescent Schiff base chemosensor for Al3+ ion: Synthesis, characterisation and DFT/TD-DFT studies. J. Mol. Struct. 2022, 1247, 131257.
https://doi.org/10.1016/j.molstruc.2021.131257

[18]. Upadhyay, K. K.; Kumar, A. Pyrimidine based highly sensitive fluorescent receptor for Al3+ showing dual signalling mechanism. Org. Biomol. Chem. 2010, 8, 4892-4897.
https://doi.org/10.1039/c0ob00171f

[19]. Salarvand, Z.; Amirnasr, M.; Meghdadi, S. Colorimetric and fluorescent sensing of Al3+ by a new 2-hydroxynaphthalen based Schiff base "Off-On" chemosensor. J. Lumin. 2019, 207, 78-84.
https://doi.org/10.1016/j.jlumin.2018.10.115

[20]. Roy, A.; Dey, S.; Halder, S.; Roy, P. Development of a new chemosensor for Al3+ ion: Tuning of properties. J. Lumin. 2017, 192, 504-512.
https://doi.org/10.1016/j.jlumin.2017.07.020

[21]. Tang, X.; Wang, Y.; Han, J.; Ni, L.; Zhang, H.; Li, C.; Li, J.; Qiu, Y. A novel fluorescent probe based on biphenyl and rhodamine for multi-metal ion recognition and its application. Dalton Trans. 2018, 47, 3378-3387.
https://doi.org/10.1039/C7DT04629D

[22]. Wang, Q.; Sun, H.; Jin, L.; Wang, W.; Zhang, Z.; Chen, Y. A novel turn on and reversible sensor for Al3+ and its applications in bioimaging. J. Lumin. 2018, 203, 113-120.
https://doi.org/10.1016/j.jlumin.2018.06.047

[23]. Li, Z.; Wang, Q.; Wang, J.; Jing, X.; Wang, S.; Xiao, L.; Li, L. A fluorescent light-up probe for selective detection of Al3+ and its application in living cell imaging. Inorganica Chim. Acta 2020, 500, 119231.
https://doi.org/10.1016/j.ica.2019.119231

[24]. Shweta, S.; Neeraj, N.; Asthana, S. K.; Mishra, R. K.; Upadhyay, K. K. Design-specific mechanistic regulation of the sensing phenomena of two Schiff bases towards Al3+. RSC Adv. 2016, 6, 55430-55437.
https://doi.org/10.1039/C6RA01385F

[25]. Pratap Singh, D.; Singh, V. P. A dihydrazone based fluorescent probe for selective determination of Al3+ ions. J. Lumin. 2014, 155, 7-14.
https://doi.org/10.1016/j.jlumin.2014.06.017

[26]. Singh, V. P.; Tiwari, K.; Mishra, M.; Srivastava, N.; Saha, S. 5-[(2-Hydroxynaphthalen-1-yl)methyleneamino]pyrmidine-2,4(1H,3H)-dione as Al3+ selective colorimetric and fluorescent chemosensor. Sens. Actuators B Chem. 2013, 182, 546-554.
https://doi.org/10.1016/j.snb.2013.03.083

[27]. Dwivedi, R.; Singh, D. P.; Chauhan, B. S.; Srikrishna, S.; Panday, A. K.; Choudhury, L. H.; Singh, V. P. Intracellular application and logic gate behavior of a 'turn off-on-off' type probe for selective detection of Al3+ and F− ions in pure aqueous medium. Sens. Actuators B Chem. 2018, 258, 881-894.
https://doi.org/10.1016/j.snb.2017.11.173

[28]. Singh, D. P.; Dwivedi, R.; Singh, A. K.; Koch, B.; Singh, P.; Singh, V. P. A dihydrazone based "turn-on" fluorescent probe for selective determination of Al3+ ions in aqueous ethanol. Sens. Actuators B Chem. 2017, 238, 128-137.
https://doi.org/10.1016/j.snb.2016.07.043

[29]. Alagesan, M.; Bhuvanesh, N. S. P.; Dharmaraj, N. Potentially cytotoxic new copper(II) hydrazone complexes: synthesis, crystal structure and biological properties. Dalton Trans. 2013, 42, 7210-7223.
https://doi.org/10.1039/c3dt50371b

[30]. Dwivedi, R.; Singh, D. P.; Singh, S.; Singh, A. K.; Chauhan, B. S.; Srikrishna, S.; Singh, V. P. Logic gate behavior and intracellular application of a fluorescent molecular switch for the detection of Fe3+ and cascade sensing of F- in pure aqueous media. Org. Biomol. Chem. 2019, 17, 7497-7506.
https://doi.org/10.1039/C9OB01398A

[31]. Mao, J.; Wang, L.; Dou, W.; Tang, X.; Yan, Y.; Liu, W. Tuning the selectivity of two chemosensors to Fe(III) and Cr(III). Org. Lett. 2007, 9, 4567-4570.
https://doi.org/10.1021/ol7020687

[32]. Li, Z.; Dai, F.; Wang, J.; Wang, S.; Xiao, L.; Li, L. A selective turn-on fluorescent probe for Al3+ based-on a diacylhydrazone deritive in aqueous medium and its cell imaging. Synth. Met. 2020, 259, 116234.
https://doi.org/10.1016/j.synthmet.2019.116234

[33]. Krishnamoorthy, P.; Sathyadevi, P.; Butorac, R. R.; Cowley, A. H.; Bhuvanesh, N. S. P.; Dharmaraj, N. Variation in the biomolecular interactions of nickel(II) hydrazone complexes upon tuning the hydrazide fragment. Dalton Trans. 2012, 41, 6842-6854.
https://doi.org/10.1039/c2dt30121k

[34]. Xing, C.; Hao, L.; Zang, L.; Tang, X.; Zhao, Y.; Lu, J. A highly selective fluorescent probe for Al3+ based on bis(2-hydroxy-1-naphth aldehyde) oxaloyldihydrazone with aggregation-induced emission enhancement and gel properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 224, 117406.
https://doi.org/10.1016/j.saa.2019.117406

[35]. Liu, Y.; Zhang, L.; Chen, L.; Liu, Z.; Liu, C.; Che, G. 2-Hydroxynaphthalene based acylhydrazone as a turn-on fluorescent chemosensor for Al3+ detection and its real sample applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 248, 119269.
https://doi.org/10.1016/j.saa.2020.119269

[36]. Gupta, S. R.; Singh, P.; Koch, B.; Singh, V. P. A water soluble, highly sensitive and selective fluorescent probe for Al 3+ ions and its application in live cell imaging. J. Photochem. Photobiol. A Chem. 2017, 348, 246-254.
https://doi.org/10.1016/j.jphotochem.2017.08.055

[37]. Jiang, Q.; Li, M.; Song, J.; Yang, Y.; Xu, X.; Xu, H.; Wang, S. A highly sensitive and selective fluorescent probe for quantitative detection of Al3+ in food, water, and living cells. RSC Adv. 2019, 9, 10414-10419.
https://doi.org/10.1039/C9RA00447E

[38]. Kumar, M.; Kumar, A.; Faizi, M. S. H.; Kumar, S.; Singh, M. K.; Sahu, S. K.; Kishor, S.; John, R. P. A selective 'turn-on' fluorescent chemosensor for detection of Al3+ in aqueous medium: Experimental and theoretical studies. Sens. Actuators B Chem. 2018, 260, 888-899.
https://doi.org/10.1016/j.snb.2018.01.098

[39]. Perrin, D. D.; Armarego, W. L. F. Purification of laboratory chemicals; Pergamon Press: Oxford; New York, 1988.

[40]. Sheldrick, G. M. Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr. A 1990, 46, 467-473.
https://doi.org/10.1107/S0108767390000277

[41]. Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement. University of Gottingen, Germany 1997.

[42]. Bruno, I. J.; Cole, J. C.; Edgington, P. R.; Kessler, M.; Macrae, C. F.; McCabe, P.; Pearson, J.; Taylor, R. New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr. B 2002, 58, 389-397.
https://doi.org/10.1107/S0108768102003324

[43]. Farrugia, L. J. ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565-565.
https://doi.org/10.1107/S0021889897003117

[44]. Job, P. Formation and Stability of Inorganic Complexes in Solution. Annales de Chimie 1928, 10, 113-203.

[45]. Wu, J.-S.; Liu, W.-M.; Zhuang, X.-Q.; Wang, F.; Wang, P.-F.; Tao, S.-L.; Zhang, X.-H.; Wu, S.-K.; Lee, S.-T. Fluorescence turn on of coumarin derivatives by metal cations: a new signaling mechanism based on C=N isomerization. Org. Lett. 2007, 9, 33-36.
https://doi.org/10.1021/ol062518z

[46]. Goswami, S.; Paul, S.; Manna, A. A differentially selective chemosensor for a ratiometric response to Zn2+ and Al3+ in aqueous media with applications for molecular switches. RSC Adv. 2013, 3, 25079.
https://doi.org/10.1039/c3ra44539a

[47]. Sahana, A.; Banerjee, A.; Das, S.; Lohar, S.; Karak, D.; Sarkar, B.; Mukhopadhyay, S. K.; Mukherjee, A. K.; Das, D. A naphthalene-based Al3+ selective fluorescent sensor for living cell imaging. Org. Biomol. Chem. 2011, 9, 5523-5529.
https://doi.org/10.1039/c1ob05479a

[48]. Arduini, M.; Felluga, F.; Mancin, F.; Rossi, P.; Tecilla, P.; Tonellato, U.; Valentinuzzi, N. Aluminium fluorescence detection with a FRET amplified chemosensor. Chem. Commun. (Camb.) 2003, 1606.
https://doi.org/10.1039/b303195k

[49]. Sen, S.; Mukherjee, T.; Chattopadhyay, B.; Moirangthem, A.; Basu, A.; Marek, J.; Chattopadhyay, P. A water soluble Al3+ selective colorimetric and fluorescent turn-on chemosensor and its application in living cell imaging. Analyst 2012, 137, 3975-3981.
https://doi.org/10.1039/c2an35560d

[50]. Chow, C.-F.; Lam, M. H. W.; Wong, W.-Y. A heterobimetallic ruthenium(II)-copper(II) donor-acceptor complex as a chemo-dosimetric ensemble for selective cyanide detection. Inorg. Chem. 2004, 43, 8387-8393.
https://doi.org/10.1021/ic0492587

[51]. Long, G. L.; Winefordner, J. D. Limit of detection A closer look at the IUPAC definition. Anal. Chem. 1983, 55, 712A-724A.
https://doi.org/10.1021/ac00258a724

[52]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc. , Wallingford CT, 2009.

Supporting Agencies

Department of Science and Technology for the INSPIRE Faculty Fellowship (Award Number, DST/INSPIRE/04/2015/002001), New Delhi, India.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).