European Journal of Chemistry 2023, 14(1), 99-108 | doi: https://doi.org/10.5155/eurjchem.14.1.99-108.2360 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

A hydroxypropiophenone-based fluorescent probe for the selective determination of Al(III) ions in aqueous ethanol


Chandni Singh (1) orcid , Divya Pratap Singh (2,*) orcid , Sunil Kumar Singh (3) orcid , Romi Dwivedi (4) orcid , Ashish Kumar Singh (5) orcid , Vinod Prasad Singh (6) orcid

(1) Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur-495009, India
(2) Department of Chemistry, Rajkiya Engineering College, Azamgarh-276201, India
(3) Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur-495009, India
(4) Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
(5) Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur-495009, India
(6) Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
(*) Corresponding Author

Received: 20 Nov 2022 | Revised: 03 Jan 2023 | Accepted: 12 Jan 2023 | Published: 31 Mar 2023 | Issue Date: March 2023

Abstract


In this work, we have synthesized a novel dihydrazone-based fluorescent probe N'1,N'2-bis{1-(2-hydroxyphenyl)propylidene}oxalohydrazide (H2hpoh)for Al3+ ions by a simple condensation reaction. The prepared organic probe has been characterized by different physicochemical and spectroscopic techniques. The single-crystal structure of the receptor has also been reported. Crystal data for C20H22N4O4: monoclinic, space group P21/c (no. 14), a = 6.0747(15) Å, b = 11.621(5) Å, c = 13.453(4) Å, β = 94.61(3)°, = 946.6(5) Å3, Z = 2, T = 293(2) K, μ(MoKα) = 0.096 mm-1, Dcalc = 1.342 g/cm3, 4046 reflections measured (6.076° ≤ 2Θ ≤ 58.05°), 2149 unique (Rint = 0.0876, Rsigma = 0.2223) which were used in all calculations. The final R1 was 0.0972 (I > 2σ(I)) and wR2 was 0.2316 (all data). The ethanolic aqueous solution of the probe shows enhanced fluorescence in the presence of Al3+ ions, whereas no appreciable change in the spectral pattern is observed in the presence of other cations, i.e., Na+, K+, Ca2+, Ba2+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cr3+, Cd2+ and Hg2+. The binding mode of the receptor with Al3+ ions was studied using various spectral titration techniques such as UV-visible, fluorescence, and 1H NMR. The receptor acts as a dibasic hexadentate ligand and interacts with two Al3+ ions with a high binding constant KB = 8.99×1010 1/M. The lowest detection limit for the Al3+ complex of H2hpoh was determined to be 7.8×10−5 M. With the help of DFT calculations, the mechanism of fluorescence enhancement has been explained.


Announcements


One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and June 16, 2023 (Voucher code: SPONSOR2023).

Editor-in-Chief
European Journal of Chemistry

Keywords


Dihydrazone; UV-vis study; Chemical sensor; Fluorescence study; Density functional theory; Chelation-enhanced fluorescence

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.14.1.99-108.2360

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 142 times | icon graph PDF Article downloaded 21 times

Funding information


Department of Science and Technology for the INSPIRE Faculty Fellowship (Award Number: DST/INSPIRE/04/2015/002001), New Delhi, India.

References


[1]. Roy, P. Recent advances in the development of fluorescent chemosensors for Al3. Dalton Trans. 2021, 50, 7156-7165.
https://doi.org/10.1039/D1DT00901J

[2]. Gupta, A.; Kumar, N. A review of mechanisms for fluorescent '"turn-on"' probes to detect Al3+ ions. RSC Adv. 2016, 6, 106413-106434.
https://doi.org/10.1039/C6RA23682K

[3]. Li, B.; He, T.; Fan, Y.; Yuan, X.; Qiu, H.; Yin, S. Recent developments in the construction of metallacycle/metallacage-cored supramolecular polymers via hierarchical self-assembly. Chem. Commun. (Camb.) 2019, 55, 8036-8059.
https://doi.org/10.1039/C9CC02472G

[4]. He, L.; Dong, B.; Liu, Y.; Lin, W. Fluorescent chemosensors manipulated by dual/triple interplaying sensing mechanisms. Chem. Soc. Rev. 2016, 45, 6449-6461.
https://doi.org/10.1039/C6CS00413J

[5]. Das, S.; Dutta, M.; Das, D. Fluorescent probes for selective determination of trace level Al3+: recent developments and future prospects. Anal. Methods 2013, 5, 6262-6285.
https://doi.org/10.1039/c3ay40982a

[6]. Hwang, I. H.; Choi, Y. W.; Kim, K. B.; Park, G. J.; Lee, J. J.; Nguyen, L.; Noh, I.; Kim, C. A highly selective and sensitive fluorescent turn-on Al3+ chemosensor in aqueous media and living cells: experimental and theoretical studies. New J Chem 2016, 40, 171-178.
https://doi.org/10.1039/C5NJ02334C

[7]. Alici, O.; Aydin, D. A Schiff-base receptor based on phenolphthalein derivate appended 2-furoic hydrazide: Highly sensitive fluorogenic "turn on" chemosensor for Al3+. J. Photochem. Photobiol. A Chem. 2021, 404, 112876.
https://doi.org/10.1016/j.jphotochem.2020.112876

[8]. Na, N.; Wang, F.; Huang, J.; Niu, C.; Yang, C.; Shang, Z.; Han, F.; Ouyang, J. An aggregation-induced emission-based fluorescent chemosensor of aluminium ions. RSC Adv. 2014, 4, 35459-35462.
https://doi.org/10.1039/C4RA05095A

[9]. Maity, D.; Govindaraju, T. A differentially selective sensor with fluorescence turn-on response to Zn2+ and dual-mode ratiometric response to Al3+ in aqueous media. Chem. Commun. (Camb.) 2012, 48, 1039-1041.
https://doi.org/10.1039/C1CC16064H

[10]. Sahana, S.; Bose, S.; Mukhopadhyay, S. K.; Bharadwaj, P. K. A highly selective and sensitive turn-on fluorescence chemosensor based on a rhodamine-adenine conjugate for Al 3+ in aqueous medium: Bio-imaging and DFT studies. J. Lumin. 2016, 169, 334-341.
https://doi.org/10.1016/j.jlumin.2015.09.009

[11]. Ghanbari, B.; Zarepour-jevinani, M. Promotional effect of macro cyclization in O2Nx naphtha-aza-crown macrocyclic ligands on fluorescence chemosensing of Al(III). J. Lumin. 2019, 205, 219-227.
https://doi.org/10.1016/j.jlumin.2018.09.014

[12]. Wang, M.; Lu, L.; Song, W.; Wang, X.; Sun, T.; Zhu, J.; Wang, J. AIE-active Schiff base compounds as fluorescent probe for the highly sensitive and selective detection of Al3+ ions. J. Lumin. 2021, 233, 117911.
https://doi.org/10.1016/j.jlumin.2021.117911

[13]. Maity, D.; Dey, S.; Roy, P. A two-pocket Schiff-base molecule as a chemosensor for Al3+. New J Chem 2017, 41, 10677-10685.
https://doi.org/10.1039/C7NJ02067H

[14]. Feng, S.; Pei, F.; Wu, Y.; Lv, J.; Hao, Q.; Yang, T.; Tong, Z.; Lei, W. A ratiometric fluorescent sensor based on g-CNQDs@Zn-MOF for the sensitive detection of riboflavin via FRET. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 246, 119004.
https://doi.org/10.1016/j.saa.2020.119004

[15]. Lv, J.; Feng, S.; Ding, Y.; Chen, C.; Zhang, Y.; Lei, W.; Hao, Q.; Chen, S.-M. A high-performance fluorescent probe for dopamine detection based on g-C3N4 nanofibers. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 212, 300-307.
https://doi.org/10.1016/j.saa.2019.01.010

[16]. Peng, H.-N.; Liu, Y.-Q.; Huang, J.-Q.; Huang, S.-S.; Cai, X.-P.; Xu, S.-J.; Huang, A.; Zeng, Q.; Xu, M. A simple fluorescent probe for selective detection of Al3+ based on furan Schiff base and its crystal structure. J. Mol. Struct. 2021, 1229, 129866.
https://doi.org/10.1016/j.molstruc.2020.129866

[17]. Kumar, M.; Kumar, A.; Kishor, S.; Kumar, S.; Kumar, A.; Manav, N.; Bhagi, A. K.; Kumar, S.; John, R. P. N-diethylaminosalicylidene based "turn-on" fluorescent Schiff base chemosensor for Al3+ ion: Synthesis, characterisation and DFT/TD-DFT studies. J. Mol. Struct. 2022, 1247, 131257.
https://doi.org/10.1016/j.molstruc.2021.131257

[18]. Upadhyay, K. K.; Kumar, A. Pyrimidine based highly sensitive fluorescent receptor for Al3+ showing dual signalling mechanism. Org. Biomol. Chem. 2010, 8, 4892-4897.
https://doi.org/10.1039/c0ob00171f

[19]. Salarvand, Z.; Amirnasr, M.; Meghdadi, S. Colorimetric and fluorescent sensing of Al3+ by a new 2-hydroxynaphthalen based Schiff base "Off-On" chemosensor. J. Lumin. 2019, 207, 78-84.
https://doi.org/10.1016/j.jlumin.2018.10.115

[20]. Roy, A.; Dey, S.; Halder, S.; Roy, P. Development of a new chemosensor for Al3+ ion: Tuning of properties. J. Lumin. 2017, 192, 504-512.
https://doi.org/10.1016/j.jlumin.2017.07.020

[21]. Tang, X.; Wang, Y.; Han, J.; Ni, L.; Zhang, H.; Li, C.; Li, J.; Qiu, Y. A novel fluorescent probe based on biphenyl and rhodamine for multi-metal ion recognition and its application. Dalton Trans. 2018, 47, 3378-3387.
https://doi.org/10.1039/C7DT04629D

[22]. Wang, Q.; Sun, H.; Jin, L.; Wang, W.; Zhang, Z.; Chen, Y. A novel turn on and reversible sensor for Al3+ and its applications in bioimaging. J. Lumin. 2018, 203, 113-120.
https://doi.org/10.1016/j.jlumin.2018.06.047

[23]. Li, Z.; Wang, Q.; Wang, J.; Jing, X.; Wang, S.; Xiao, L.; Li, L. A fluorescent light-up probe for selective detection of Al3+ and its application in living cell imaging. Inorganica Chim. Acta 2020, 500, 119231.
https://doi.org/10.1016/j.ica.2019.119231

[24]. Shweta, S.; Neeraj, N.; Asthana, S. K.; Mishra, R. K.; Upadhyay, K. K. Design-specific mechanistic regulation of the sensing phenomena of two Schiff bases towards Al3+. RSC Adv. 2016, 6, 55430-55437.
https://doi.org/10.1039/C6RA01385F

[25]. Pratap Singh, D.; Singh, V. P. A dihydrazone based fluorescent probe for selective determination of Al3+ ions. J. Lumin. 2014, 155, 7-14.
https://doi.org/10.1016/j.jlumin.2014.06.017

[26]. Singh, V. P.; Tiwari, K.; Mishra, M.; Srivastava, N.; Saha, S. 5-[(2-Hydroxynaphthalen-1-yl)methyleneamino]pyrmidine-2,4(1H,3H)-dione as Al3+ selective colorimetric and fluorescent chemosensor. Sens. Actuators B Chem. 2013, 182, 546-554.
https://doi.org/10.1016/j.snb.2013.03.083

[27]. Dwivedi, R.; Singh, D. P.; Chauhan, B. S.; Srikrishna, S.; Panday, A. K.; Choudhury, L. H.; Singh, V. P. Intracellular application and logic gate behavior of a 'turn off-on-off' type probe for selective detection of Al3+ and F− ions in pure aqueous medium. Sens. Actuators B Chem. 2018, 258, 881-894.
https://doi.org/10.1016/j.snb.2017.11.173

[28]. Singh, D. P.; Dwivedi, R.; Singh, A. K.; Koch, B.; Singh, P.; Singh, V. P. A dihydrazone based "turn-on" fluorescent probe for selective determination of Al3+ ions in aqueous ethanol. Sens. Actuators B Chem. 2017, 238, 128-137.
https://doi.org/10.1016/j.snb.2016.07.043

[29]. Alagesan, M.; Bhuvanesh, N. S. P.; Dharmaraj, N. Potentially cytotoxic new copper(II) hydrazone complexes: synthesis, crystal structure and biological properties. Dalton Trans. 2013, 42, 7210-7223.
https://doi.org/10.1039/c3dt50371b

[30]. Dwivedi, R.; Singh, D. P.; Singh, S.; Singh, A. K.; Chauhan, B. S.; Srikrishna, S.; Singh, V. P. Logic gate behavior and intracellular application of a fluorescent molecular switch for the detection of Fe3+ and cascade sensing of F- in pure aqueous media. Org. Biomol. Chem. 2019, 17, 7497-7506.
https://doi.org/10.1039/C9OB01398A

[31]. Mao, J.; Wang, L.; Dou, W.; Tang, X.; Yan, Y.; Liu, W. Tuning the selectivity of two chemosensors to Fe(III) and Cr(III). Org. Lett. 2007, 9, 4567-4570.
https://doi.org/10.1021/ol7020687

[32]. Li, Z.; Dai, F.; Wang, J.; Wang, S.; Xiao, L.; Li, L. A selective turn-on fluorescent probe for Al3+ based-on a diacylhydrazone deritive in aqueous medium and its cell imaging. Synth. Met. 2020, 259, 116234.
https://doi.org/10.1016/j.synthmet.2019.116234

[33]. Krishnamoorthy, P.; Sathyadevi, P.; Butorac, R. R.; Cowley, A. H.; Bhuvanesh, N. S. P.; Dharmaraj, N. Variation in the biomolecular interactions of nickel(II) hydrazone complexes upon tuning the hydrazide fragment. Dalton Trans. 2012, 41, 6842-6854.
https://doi.org/10.1039/c2dt30121k

[34]. Xing, C.; Hao, L.; Zang, L.; Tang, X.; Zhao, Y.; Lu, J. A highly selective fluorescent probe for Al3+ based on bis(2-hydroxy-1-naphth aldehyde) oxaloyldihydrazone with aggregation-induced emission enhancement and gel properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 224, 117406.
https://doi.org/10.1016/j.saa.2019.117406

[35]. Liu, Y.; Zhang, L.; Chen, L.; Liu, Z.; Liu, C.; Che, G. 2-Hydroxynaphthalene based acylhydrazone as a turn-on fluorescent chemosensor for Al3+ detection and its real sample applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 248, 119269.
https://doi.org/10.1016/j.saa.2020.119269

[36]. Gupta, S. R.; Singh, P.; Koch, B.; Singh, V. P. A water soluble, highly sensitive and selective fluorescent probe for Al 3+ ions and its application in live cell imaging. J. Photochem. Photobiol. A Chem. 2017, 348, 246-254.
https://doi.org/10.1016/j.jphotochem.2017.08.055

[37]. Jiang, Q.; Li, M.; Song, J.; Yang, Y.; Xu, X.; Xu, H.; Wang, S. A highly sensitive and selective fluorescent probe for quantitative detection of Al3+ in food, water, and living cells. RSC Adv. 2019, 9, 10414-10419.
https://doi.org/10.1039/C9RA00447E

[38]. Kumar, M.; Kumar, A.; Faizi, M. S. H.; Kumar, S.; Singh, M. K.; Sahu, S. K.; Kishor, S.; John, R. P. A selective 'turn-on' fluorescent chemosensor for detection of Al3+ in aqueous medium: Experimental and theoretical studies. Sens. Actuators B Chem. 2018, 260, 888-899.
https://doi.org/10.1016/j.snb.2018.01.098

[39]. Perrin, D. D.; Armarego, W. L. F. Purification of laboratory chemicals; Pergamon Press: Oxford; New York, 1988.

[40]. Sheldrick, G. M. Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr. A 1990, 46, 467-473.
https://doi.org/10.1107/S0108767390000277

[41]. Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement. University of Gottingen, Germany 1997.

[42]. Bruno, I. J.; Cole, J. C.; Edgington, P. R.; Kessler, M.; Macrae, C. F.; McCabe, P.; Pearson, J.; Taylor, R. New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr. B 2002, 58, 389-397.
https://doi.org/10.1107/S0108768102003324

[43]. Farrugia, L. J. ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565-565.
https://doi.org/10.1107/S0021889897003117

[44]. Job, P. Formation and Stability of Inorganic Complexes in Solution. Annales de Chimie 1928, 10, 113-203.

[45]. Wu, J.-S.; Liu, W.-M.; Zhuang, X.-Q.; Wang, F.; Wang, P.-F.; Tao, S.-L.; Zhang, X.-H.; Wu, S.-K.; Lee, S.-T. Fluorescence turn on of coumarin derivatives by metal cations: a new signaling mechanism based on C=N isomerization. Org. Lett. 2007, 9, 33-36.
https://doi.org/10.1021/ol062518z

[46]. Goswami, S.; Paul, S.; Manna, A. A differentially selective chemosensor for a ratiometric response to Zn2+ and Al3+ in aqueous media with applications for molecular switches. RSC Adv. 2013, 3, 25079.
https://doi.org/10.1039/c3ra44539a

[47]. Sahana, A.; Banerjee, A.; Das, S.; Lohar, S.; Karak, D.; Sarkar, B.; Mukhopadhyay, S. K.; Mukherjee, A. K.; Das, D. A naphthalene-based Al3+ selective fluorescent sensor for living cell imaging. Org. Biomol. Chem. 2011, 9, 5523-5529.
https://doi.org/10.1039/c1ob05479a

[48]. Arduini, M.; Felluga, F.; Mancin, F.; Rossi, P.; Tecilla, P.; Tonellato, U.; Valentinuzzi, N. Aluminium fluorescence detection with a FRET amplified chemosensor. Chem. Commun. (Camb.) 2003, 1606.
https://doi.org/10.1039/b303195k

[49]. Sen, S.; Mukherjee, T.; Chattopadhyay, B.; Moirangthem, A.; Basu, A.; Marek, J.; Chattopadhyay, P. A water soluble Al3+ selective colorimetric and fluorescent turn-on chemosensor and its application in living cell imaging. Analyst 2012, 137, 3975-3981.
https://doi.org/10.1039/c2an35560d

[50]. Chow, C.-F.; Lam, M. H. W.; Wong, W.-Y. A heterobimetallic ruthenium(II)-copper(II) donor-acceptor complex as a chemo-dosimetric ensemble for selective cyanide detection. Inorg. Chem. 2004, 43, 8387-8393.
https://doi.org/10.1021/ic0492587

[51]. Long, G. L.; Winefordner, J. D. Limit of detection A closer look at the IUPAC definition. Anal. Chem. 1983, 55, 712A-724A.
https://doi.org/10.1021/ac00258a724

[52]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc. , Wallingford CT, 2009.


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Singh, C.; Singh, D.; Singh, S.; Dwivedi, R.; Singh, A.; Singh, V. Eur. J. Chem. 2023, 14(1), 99-108. doi:10.5155/eurjchem.14.1.99-108.2360
Singh, C.; Singh, D.; Singh, S.; Dwivedi, R.; Singh, A.; Singh, V. A hydroxypropiophenone-based fluorescent probe for the selective determination of Al(III) ions in aqueous ethanol. Eur. J. Chem. 2023, 14(1), 99-108. doi:10.5155/eurjchem.14.1.99-108.2360
Singh, C., Singh, D., Singh, S., Dwivedi, R., Singh, A., & Singh, V. (2023). A hydroxypropiophenone-based fluorescent probe for the selective determination of Al(III) ions in aqueous ethanol. European Journal of Chemistry, 14(1), 99-108. doi:10.5155/eurjchem.14.1.99-108.2360
Singh, Chandni, Divya Pratap Singh, Sunil Kumar Singh, Romi Dwivedi, Ashish Kumar Singh, & Vinod Prasad Singh. "A hydroxypropiophenone-based fluorescent probe for the selective determination of Al(III) ions in aqueous ethanol." European Journal of Chemistry [Online], 14.1 (2023): 99-108. Web. 31 May. 2023
Singh, Chandni, Singh, Divya, Singh, Sunil, Dwivedi, Romi, Singh, Ashish, AND Singh, Vinod. "A hydroxypropiophenone-based fluorescent probe for the selective determination of Al(III) ions in aqueous ethanol" European Journal of Chemistry [Online], Volume 14 Number 1 (31 March 2023)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.14.1.99-108.2360


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2023, 14(1), 99-108 | doi: https://doi.org/10.5155/eurjchem.14.1.99-108.2360 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.