European Journal of Chemistry

Synthesis, physicochemical characterisation and DNA binding study of a novel azo Schiff base Ni(II) complex


Main Article Content

Uttam Kumar Singha
Sudarshan Pradhan
Dipu Kumar Mishra
Pritika Gurung
Anmol Chettri
Biswajit Sinha


The azo Schiff base ligand was synthesised, along with its Ni(II) complex, by diazotisation of salicylaldehyde with 4-nitroaniline in accordance with the accepted literature approach. Using a variety of spectroscopic techniques, the resulting complex is analysed both quantitatively and qualitatively (Elemental analysis, FT-IR spectroscopy, UV-VIS spectroscopy, 1H NMR, etc.). Spectral measurements of the complex revealed a mole ratio of 1:1. The non-electrolytic nature of the complex is confirmed by molar conductance investigation. The unique azo compound had a tetrahedral shape as a result of the tetra coordination of two phenolic oxygen and two imine nitrogen. The ability of the metal complexes to bind DNA was examined using absorption spectroscopy, fluorescence spectroscopy, viscosity tests, and thermal denaturation methods. Experimental research suggests that complexes bind to DNA through intercalation.

icon graph This Abstract was viewed 382 times | icon graph Article PDF downloaded 167 times

How to Cite
Singha, U. K.; Pradhan, S.; Mishra, D. K.; Gurung, P.; Chettri, A.; Sinha, B. Synthesis, Physicochemical Characterisation and DNA Binding Study of a Novel Azo Schiff Base Ni(II) Complex. Eur. J. Chem. 2023, 14, 280-286.

Article Details

Crossref - Scopus - Google - European PMC

[1]. More, M. S.; Joshi, P. G.; Mishra, Y. K.; Khanna, P. K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: a review. Mater. Today Chem. 2019, 14, 100195.

[2]. Zhao, P.; Zhai, S.; Dong, J.; Gao, L.; Liu, X.; Wang, L.; Kong, J.; Li, L. Synthesis, structure, DNA interaction, and SOD activity of three nickel(II) complexes containing L-phenylalanine Schiff base and 1,10-phenanthroline. Bioinorg. Chem. Appl. 2018, 2018, 1-16.

[3]. Andruh, M. The exceptionally rich coordination chemistry generated by Schiff-base ligands derived from o-vanillin. Dalton Trans. 2015, 44, 16633-16653.

[4]. Charo, J.; Lindencrona, J. A.; Carlson, L.-M.; Hinkula, J.; Kiessling, R. Protective efficacy of a DNA influenza virus vaccine is markedly increased by the coadministration of a Schiff base-forming drug. J. Virol. 2004, 78, 11321-11326.

[5]. Arunadevi, A.; Raman, N. Biological response of Schiff base metal complexes incorporating amino acids - a short review. J. Coord. Chem. 2020, 73, 2095-2116.

[6]. Ommenya, F. K.; Nyawade, E. A.; Andala, D. M.; Kinyua, J. Synthesis, characterization and antibacterial activity of Schiff base, 4-chloro-2-(E)-[(4-fluorophenyl)imino]methylphenol metal (II) complexes. J. Chem. 2020, 2020, 1-8.

[7]. de Fátima, Â.; Pereira, C. de P.; Olímpio, C. R. S. D. G.; de Freitas Oliveira, B. G.; Franco, L. L.; da Silva, P. H. C. Schiff bases and their metal complexes as urease inhibitors - A brief review. J. Adv. Res. 2018, 13, 113-126.

[8]. Wesley Jeevadason, A.; Kalidasa Murugavel, K.; Neelakantan, M. A. Review on Schiff bases and their metal complexes as organic photovoltaic materials. Renew. Sustain. Energy Rev. 2014, 36, 220-227.

[9]. Hannon, M. J. Metal-based anticancer drugs: From a past anchored in platinum chemistry to a post-genomic future of diverse chemistry and biology. Pure Appl. Chem. 2007, 79, 2243-2261.

[10]. Maksimoska, J.; Feng, L.; Harms, K.; Yi, C.; Kissil, J.; Marmorstein, R.; Meggers, E. Targeting large kinase active site with rigid, bulky octahedral ruthenium complexes. J. Am. Chem. Soc. 2008, 130, 15764-15765.

[11]. Catalano, A.; Sinicropi, M. S.; Iacopetta, D.; Ceramella, J.; Mariconda, A.; Rosano, C.; Scali, E.; Saturnino, C.; Longo, P. A review on the advancements in the field of metal complexes with Schiff bases as antiproliferative agents. Appl. Sci. (Basel) 2021, 11, 6027.

[12]. Junicke, H.; Hart, J. R.; Kisko, J.; Glebov, O.; Kirsch, I. R.; Barton, J. K. A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3737-3742.

[13]. Al Zoubi, W.; Al-Hamdani, A. A. S.; Ahmed, S. D.; Ko, Y. G. Synthesis, characterization, and biological activity of Schiff bases metal complexes. J. Phys. Org. Chem. 2018, 31, e3752.

[14]. El-Sonbati, A. Z.; Mahmoud, W. H.; Mohamed, G. G.; Diab, M. A.; Morgan, S. M.; Abbas, S. Y. Synthesis, characterization of Schiff base metal complexes and their biological investigation: Synthesis, characterization of Schiff base metal complexes. Appl. Organomet. Chem. 2019, e5048.

[15]. Mal, S. K.; Chattopadhyay, T.; Fathima, A.; Purohit, C. S.; Kiran, M. S.; Nair, B. U.; Ghosh, R. Synthesis and structural characterization of a vanadium(V)-pyridylbenzimidazole complex: DNA binding and anticancer activity. Polyhedron 2017, 126, 23-27.

[16]. Naureen, B.; Miana, G. A.; Shahid, K.; Asghar, M.; Tanveer, S.; Sarwar, A. Iron (III) and zinc (II) monodentate Schiff base metal complexes: Synthesis, characterisation and biological activities. J. Mol. Struct. 2021, 1231, 129946.

[17]. Osypiuk, D.; Cristóvão, B.; Bartyzel, A. New coordination compounds of CuII with Schiff base ligands-crystal structure, thermal, and spectral investigations. Crystals (Basel) 2020, 10, 1004.

[18]. Malinowski, J.; Zych, D.; Jacewicz, D.; Gawdzik, B.; Drzeżdżon, J. Application of coordination compounds with transition metal ions in the chemical industry-A review. Int. J. Mol. Sci. 2020, 21, 5443.

[19]. Barton, J. K.; Olmon, E. D.; Sontz, P. A. Metal complexes for DNA-mediated charge transport. Coord. Chem. Rev. 2011, 255, 619-634.

[20]. Sahu, G.; Tiekink, E. R. T.; Dinda, R. Study of DNA interaction and cytotoxicity activity of oxidovanadium(V) complexes with ONO donor Schiff base ligands. Inorganics 2021, 9, 66.

[21]. Palanimurugan, A.; Dhanalakshmi, A.; Selvapandian, P.; Kulandaisamy, A. Electrochemical behavior, structural, morphological, Calf Thymus-DNA interaction and in-vitro antimicrobial studies of synthesized Schiff base transition metal complexes. Heliyon 2019, 5, e02039.

[22]. Khalil, M. M. H.; Ismail, E. H.; Mohamed, G. G.; Zayed, E. M.; Badr, A. Synthesis and characterization of a novel schiff base metal complexes and their application in determination of iron in different types of natural water. Open J. Inorg. Chem. 2012, 02, 13-21.

[23]. Tan, C.; Liu, J.; Chen, L.; Shi, S.; Ji, L. Synthesis, structural characteristics, DNA binding properties and cytotoxicity studies of a series of Ru(III) complexes. J. Inorg. Biochem. 2008, 102, 1644-1653.

[24]. Haghighi, F. H.; Hadadzadeh, H.; Darabi, F.; Jannesari, Z.; Ebrahimi, M.; Khayamian, T.; Salimi, M.; Rudbari, H. A. Polypyridyl Ni(II) complex, [Ni(tppz)2]2+: Structure, DNA- and BSA binding and molecular modeling. Polyhedron 2013, 65, 16-30.

[25]. Gurusamy, S.; Krishnaveni, K.; Sankarganesh, M.; Nandini Asha, R.; Mathavan, A. Synthesis, characterization, DNA interaction, BSA/HSA binding activities of VO(IV), Cu(II) and Zn(II) Schiff base complexes and its molecular docking with biomolecules. J. Mol. Liq. 2022, 345, 117045.

[26]. Packianathan, S.; Kumaravel, G.; Raman, N. DNA interaction, antimicrobial and molecular docking studies of biologically interesting Schiff base complexes incorporating 4-formyl-N ,N -dimethylaniline and propylenediamine: DNA interaction, antimicrobial and molecular docking studies. Appl. Organomet. Chem. 2017, 31, e3577.

[27]. Bheemarasetti, M.; Palakuri, K.; Raj, S.; Saudagar, P.; Gandamalla, D.; Yellu, N. R.; Kotha, L. R. Novel Schiff base metal complexes: synthesis, characterization, DNA binding, DNA cleavage and molecular docking studies. J. Iran. Chem. Soc. 2018, 15, 1377-1389.

[28]. Rambabu, A.; Pradeep Kumar, M.; Tejaswi, S.; Vamsikrishna, N.; Shivaraj DNA interaction, antimicrobial studies of newly synthesized copper (II) complexes with 2-amino-6-(trifluoromethoxy)benzo thiazole Schiff base ligands. J. Photochem. Photobiol. B 2016, 165, 147-156.

[29]. Rao, N. N.; Kishan, E.; Gopichand, K.; Nagaraju, R.; Ganai, A. M.; Rao, P. V. Design, synthesis, spectral characterization, DNA binding, photo cleavage and antibacterial studies of transition metal complexes of benzothiazole Schiff base. Chem. Data Coll. 2020, 27, 100368.

[30]. Mishra, D. K.; Singha, U. K.; Das, A.; Dutta, S.; Kar, P.; Chakraborty, A.; Sen, A.; Sinha, B. DNA Binding, amelioration of oxidative stress, and molecular docking study of Zn(II) metal complex of a new Schiff base ligand. J. Coord. Chem. 2018, 71, 2165-2182.

Supporting Agencies

Departmental Special Assistance Scheme under the University Grants Commission, New Delhi (SAP-DRS-III, No.540/12/DRS/2013) and the University of North Bengal, Government of West Bengal for financial and instrumental support.
Most read articles by the same author(s)

Most read articles by the same author(s)


Dimensions - Altmetric - scite_ - PlumX

Downloads and views


Download data is not yet available.


Metrics Loading ...
License Terms

License Terms


Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).