European Journal of Chemistry

Comparison of the performance of an organic acid and an inorganic acid pretreatment by means of enzymatic hydrolysis of coffee husk

Crossmark


Main Article Content

Nataly Alejandra Castro-Ferro
Halina Maniak

Abstract

The study of different lignocellulosic materials for second-generation biofuels is one of the trending topics today because of the high demand for fuels for transportation and electricity generation. Coffee husk is presented as one study option considering that only 10% of the coffee fruit is used for coffee production. The pretreatment of the coffee husk with sulfuric acid (3 or 6%) and citric acid (6 or 12%) was compared using two methodologies. The first had reaction condition time (50, 70, 90, and 1440 min) and temperature (70 and 90 °C), while the second had autoclave conditions (121 °C, 14.696 psi, 60 min). The comparison was made to find the best methodology for acid pretreatment before enzymatic hydrolysis. The best result of the reduction of sugars (17.017%) and glucose yield (3.882%) was found with 6% C6H8O7 in autoclaving (121 °C, 14.696 psi, 60 min) with hydrolysis conditions of 72 h, 150 rpm, 50 °C, and using cellulases from Trichoderma reesei.


icon graph This Abstract was viewed 370 times | icon graph Article PDF downloaded 146 times

How to Cite
(1)
Castro-Ferro, N. A.; Maniak, H. Comparison of the Performance of an Organic Acid and an Inorganic Acid Pretreatment by Means of Enzymatic Hydrolysis of Coffee Husk. Eur. J. Chem. 2023, 14, 172-183.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Mazza, S.; Aiello, D.; Macario, A.; De Luca, P. Vehicular Emission: Estimate of air pollutants to guide local political choices. A case study. Environments 2020, 7, 37.
https://doi.org/10.3390/environments7050037

[2]. Hackenberg, N. Biocombustibles de segunda generación. https://cebem.org/revistaredesma/vol4/articulo3.php?id=c1 (accessed January 9, 2023).

[3]. Bertini, C.; Berhan, T.; Egziabher, G.; Haddad, L.; Kumar, M. S.; Hendriks, S. L.; De Janvry, A.; Maluf, R.; Aly, M. M.; Perez, C.; Castillo, D.; Rabbinge, R.; Tang, H.; Tikhonovich, I.; Wongchinda, N.; Wilkinson, J.; Afiff, S.; Carriquiry, M.; Jumbe, C.; Searchinger, T.; Gitz, V. HLPE Steering Committee members (June 2013) MS Swaminathan (chair) Maryam rahmanian (vice-chair). http://www.fao.org/3/i2952e/ i2952e.pdf (accessed January 9, 2023).

[4]. Naik, S. N.; Goud, V. V.; Rout, P. K.; Dalai, A. K. Production of first and second generation biofuels: A comprehensive review. Renew. Sustain. Energy Rev. 2010, 14, 578-597.
https://doi.org/10.1016/j.rser.2009.10.003

[5]. Duku, M. H.; Gu, S.; Hagan, E. B. A comprehensive review of biomass resources and biofuels potential in Ghana. Renew. Sustain. Energy Rev. 2011, 15, 404-415.
https://doi.org/10.1016/j.rser.2010.09.033

[6]. National Administrative Department of Statistics Exportaciones. https://www.dane.gov.co/index.php/estadisticas-por-tema/comercio-internacional/exportaciones (accessed January 9, 2023).

[7]. Rodriguez, N.; Sanz, J. R.; Oliveros, C. E.; Ramírez, C. A. Beneficio convencional del café en Colombia. http://www.cenicafe.org/es/ publications/Beneficio-del-cafe-en-Colombia.pdf (accessed January 9, 2023).

[8]. Puerta Q., G. I.; Rios A., S. Composición química del mucílago de café según el tiempo de fermentación y refrigeración. Cenicafe 2014, 62, 23-40, https://biblioteca.cenicafe.org/handle/10778/478.

[9]. Castro Ferro, N. A. M. V. Obtención de azúcares fermentables vía hidrólisis subcrítica a partir de la cascarilla de café en una unidad de Laboratorio Batch. Técnica 2019, 21, 53-76.
https://doi.org/10.33936/la_tecnica.v0i21.1870

[10]. Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 1927, 73, 627-650.
https://doi.org/10.1016/S0021-9258(18)84277-6

[11]. Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426-428.
https://doi.org/10.1021/ac60147a030

[12]. Scherzinger, M.; Kulbeik, T.; Kaltschmitt, M. Autoclave pre-treatment of green wastes - Effects of temperature, residence time and rotation speed on fuel properties. Fuel (Lond.) 2020, 273, 117796.
https://doi.org/10.1016/j.fuel.2020.117796

[13]. Minitab, LLC. (2021). Retrieved from https://www.minitab.com. (accessed January 9, 2023).

[14]. Pareto chart of standardized effects. https://support.minitab.com/ en-us/minitab/20/help-and-how-to/statistical-modeling/ regression/how-to/fit-regression-model/interpret-the-results/all-statistics-and-graphs/pareto-chart/. (accessed January 9, 2023).

[15]. Urbaneja, G.; Ferrer, J.; Paez, G.; Arenas, L.; Colina, G. Acid hydrolysis and carbohydrates characterization of coffee pulp. Renew. Energy 1996, 9, 1041-1044.
https://doi.org/10.1016/0960-1481(96)88458-8

[16]. Morales-Martínez, J. L.; Aguilar-Uscanga, M. G.; Bolaños-Reynoso, E.; López-Zamora, L. Optimization of chemical pretreatments using response surface methodology for second-generation ethanol production from coffee husk waste. Bioenergy Res. 2021, 14, 815-827.
https://doi.org/10.1007/s12155-020-10197-6

[17]. Kefale, A.; Redi̇b, M.; Asfaw, A. Bioethanol production and optimization test from agricultural waste: The case of wet coffee processing waste (pulp). Int. J. Renew. Energy Res. 2012, 2, 446-450.

[18]. Bukhari, N. A.; Jahim, J. M.; Loh, S. K.; Nasrin, A. B.; Harun, S.; Abdul, P. M. Organic acid pretreatment of oil palm trunk biomass for succinic acid production. Waste Biomass Valorization 2020, 11, 5549-5559.
https://doi.org/10.1007/s12649-020-00953-2

[19]. Sahu, S.; Pramanik, K. Evaluation and optimization of organic acid pretreatment of Cotton Gin waste for enzymatic hydrolysis and bioethanol production. Appl. Biochem. Biotechnol. 2018, 186, 1047-1060.
https://doi.org/10.1007/s12010-018-2790-7

[20]. Gomes, M. G.; Gurgel, L. V. A.; Baffi, M. A.; Pasquini, D. Pretreatment of sugarcane bagasse using citric acid and its use in enzymatic hydrolysis. Renew. Energy 2020, 157, 332-341.
https://doi.org/10.1016/j.renene.2020.05.002

[21]. Zhang, F.; Bunterngsook, B.; Li, J.-X.; Zhao, X.-Q.; Champreda, V.; Liu, C.-G.; Bai, F.-W. Regulation and production of lignocellulolytic enzymes from Trichoderma reesei for biofuels production. In Advances in Bioenergy; Elsevier, 2019; pp. 79-119.
https://doi.org/10.1016/bs.aibe.2019.03.001

[22]. Fang, H.; Zhao, R.; Li, C.; Zhao, C. Simultaneous enhancement of the beta-exo synergism and exo-exo synergism in Trichoderma reesei cellulase to increase the cellulose degrading capability. Microb. Cell Fact. 2019, 18, 9.
https://doi.org/10.1186/s12934-019-1060-x

[23]. MacAskill, J. J.; Suckling, I. D.; Lloyd, J. A.; Manley-Harris, M. Unravelling the effect of pretreatment severity on the balance of cellulose accessibility and substrate composition on enzymatic digestibility of steam-pretreated softwood. Biomass Bioenergy 2018, 109, 284-290.
https://doi.org/10.1016/j.biombioe.2017.12.018

[24]. Woiciechowski, A. L.; Pandey, A.; Machado, C. M. M.; Cardoso, E. B.; Soccol, C. R. Hydrolysis of coffee husk: Process optimization to recover its fermentable sugar. In Coffee Biotechnology and Quality; Springer Netherlands: Dordrecht, 2000; pp. 409-417.
https://doi.org/10.1007/978-94-017-1068-8_38

[25]. Nava-Valente, N.; Del Ángel-Coronel, O. A.; Atenodoro-Alonso, J.; López-Escobar, L. A. Effect of thermal and acid pre-treatment on increasing organic loading rate of anaerobic digestion of coffee pulp for biogas production. Biomass Convers. Biorefin. 2021, https://doi.org/10.1007/s13399-021-01529-3.
https://doi.org/10.1007/s13399-021-01529-3

[26]. Silva, N. C. S.; Fonseca, Y. A.; Camargos, A. B.; Lima, A. L. D.; Ribeiro, M. C.; Gurgel, L. V. A.; Lobo Baêta, B. E. Pretreatment and enzymatic hydrolysis of coffee husk for the production of potentially fermentable sugars. J. Chem. Technol. Biotechnol. 2022, 97, 676-688.
https://doi.org/10.1002/jctb.6950

[27]. Menezes, E. G. T.; do Carmo, J. R.; Alves, J. G. L. F.; Menezes, A. G. T.; Guimarães, I. C.; Queiroz, F.; Pimenta, C. J. Optimization of alkaline pretreatment of coffee pulp for production of bioethanol. Biotechnol. Prog. 2014, 30, 451-462.
https://doi.org/10.1002/btpr.1856

Supporting Agencies

The Department of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wrocław University of Science and Technology, Poland.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).