

Comparison of the performance of an organic acid and an inorganic acid pretreatment by means of enzymatic hydrolysis of coffee husk
Nataly Alejandra Castro-Ferro (1,*)


(1) Department of Chemistry Faculty of Chemical Engineering, Wroclaw University of Science and Technology, Wroclaw, 50-373, Poland
(2) Department of Chemistry Faculty of Chemical Engineering, Wroclaw University of Science and Technology, Wroclaw, 50-373, Poland
(*) Corresponding Author
Received: 21 Dec 2022 | Revised: 04 Feb 2023 | Accepted: 21 Feb 2023 | Published: 30 Jun 2023 | Issue Date: June 2023
Abstract
The study of different lignocellulosic materials for second-generation biofuels is one of the trending topics today because of the high demand for fuels for transportation and electricity generation. Coffee husk is presented as one study option considering that only 10% of the coffee fruit is used for coffee production. The pretreatment of the coffee husk with sulfuric acid (3 or 6%) and citric acid (6 or 12%) was compared using two methodologies. The first had reaction condition time (50, 70, 90, and 1440 min) and temperature (70 and 90 °C), while the second had autoclave conditions (121 °C, 14.696 psi, 60 min). The comparison was made to find the best methodology for acid pretreatment before enzymatic hydrolysis. The best result of the reduction of sugars (17.017%) and glucose yield (3.882%) was found with 6% C6H8O7 in autoclaving (121 °C, 14.696 psi, 60 min) with hydrolysis conditions of 72 h, 150 rpm, 50 °C, and using cellulases from Trichoderma reesei.
Announcements
Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.
1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).
2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).
3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.14.2.172-183.2391
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
The Department of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wrocław University of Science and Technology, Poland.
References
[1]. Mazza, S.; Aiello, D.; Macario, A.; De Luca, P. Vehicular Emission: Estimate of air pollutants to guide local political choices. A case study. Environments 2020, 7, 37.
https://doi.org/10.3390/environments7050037
[2]. Hackenberg, N. Biocombustibles de segunda generación. https://cebem.org/revistaredesma/vol4/articulo3.php?id=c1 (accessed January 9, 2023).
[3]. Bertini, C.; Berhan, T.; Egziabher, G.; Haddad, L.; Kumar, M. S.; Hendriks, S. L.; De Janvry, A.; Maluf, R.; Aly, M. M.; Perez, C.; Castillo, D.; Rabbinge, R.; Tang, H.; Tikhonovich, I.; Wongchinda, N.; Wilkinson, J.; Afiff, S.; Carriquiry, M.; Jumbe, C.; Searchinger, T.; Gitz, V. HLPE Steering Committee members (June 2013) MS Swaminathan (chair) Maryam rahmanian (vice-chair). http://www.fao.org/3/i2952e/ i2952e.pdf (accessed January 9, 2023).
[4]. Naik, S. N.; Goud, V. V.; Rout, P. K.; Dalai, A. K. Production of first and second generation biofuels: A comprehensive review. Renew. Sustain. Energy Rev. 2010, 14, 578-597.
https://doi.org/10.1016/j.rser.2009.10.003
[5]. Duku, M. H.; Gu, S.; Hagan, E. B. A comprehensive review of biomass resources and biofuels potential in Ghana. Renew. Sustain. Energy Rev. 2011, 15, 404-415.
https://doi.org/10.1016/j.rser.2010.09.033
[6]. National Administrative Department of Statistics Exportaciones. https://www.dane.gov.co/index.php/estadisticas-por-tema/comercio-internacional/exportaciones (accessed January 9, 2023).
[7]. Rodriguez, N.; Sanz, J. R.; Oliveros, C. E.; Ramírez, C. A. Beneficio convencional del café en Colombia. http://www.cenicafe.org/es/ publications/Beneficio-del-cafe-en-Colombia.pdf (accessed January 9, 2023).
[8]. Puerta Q., G. I.; Rios A., S. Composición química del mucílago de café según el tiempo de fermentación y refrigeración. Cenicafe 2014, 62, 23-40, https://biblioteca.cenicafe.org/handle/10778/478.
[9]. Castro Ferro, N. A. M. V. Obtención de azúcares fermentables vía hidrólisis subcrítica a partir de la cascarilla de café en una unidad de Laboratorio Batch. Técnica 2019, 21, 53-76.
https://doi.org/10.33936/la_tecnica.v0i21.1870
[10]. Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 1927, 73, 627-650.
https://doi.org/10.1016/S0021-9258(18)84277-6
[11]. Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426-428.
https://doi.org/10.1021/ac60147a030
[12]. Scherzinger, M.; Kulbeik, T.; Kaltschmitt, M. Autoclave pre-treatment of green wastes - Effects of temperature, residence time and rotation speed on fuel properties. Fuel (Lond.) 2020, 273, 117796.
https://doi.org/10.1016/j.fuel.2020.117796
[13]. Minitab, LLC. (2021). Retrieved from https://www.minitab.com. (accessed January 9, 2023).
[14]. Pareto chart of standardized effects. https://support.minitab.com/ en-us/minitab/20/help-and-how-to/statistical-modeling/ regression/how-to/fit-regression-model/interpret-the-results/all-statistics-and-graphs/pareto-chart/. (accessed January 9, 2023).
[15]. Urbaneja, G.; Ferrer, J.; Paez, G.; Arenas, L.; Colina, G. Acid hydrolysis and carbohydrates characterization of coffee pulp. Renew. Energy 1996, 9, 1041-1044.
https://doi.org/10.1016/0960-1481(96)88458-8
[16]. Morales-Martínez, J. L.; Aguilar-Uscanga, M. G.; Bolaños-Reynoso, E.; López-Zamora, L. Optimization of chemical pretreatments using response surface methodology for second-generation ethanol production from coffee husk waste. Bioenergy Res. 2021, 14, 815-827.
https://doi.org/10.1007/s12155-020-10197-6
[17]. Kefale, A.; Redi̇b, M.; Asfaw, A. Bioethanol production and optimization test from agricultural waste: The case of wet coffee processing waste (pulp). Int. J. Renew. Energy Res. 2012, 2, 446-450.
[18]. Bukhari, N. A.; Jahim, J. M.; Loh, S. K.; Nasrin, A. B.; Harun, S.; Abdul, P. M. Organic acid pretreatment of oil palm trunk biomass for succinic acid production. Waste Biomass Valorization 2020, 11, 5549-5559.
https://doi.org/10.1007/s12649-020-00953-2
[19]. Sahu, S.; Pramanik, K. Evaluation and optimization of organic acid pretreatment of Cotton Gin waste for enzymatic hydrolysis and bioethanol production. Appl. Biochem. Biotechnol. 2018, 186, 1047-1060.
https://doi.org/10.1007/s12010-018-2790-7
[20]. Gomes, M. G.; Gurgel, L. V. A.; Baffi, M. A.; Pasquini, D. Pretreatment of sugarcane bagasse using citric acid and its use in enzymatic hydrolysis. Renew. Energy 2020, 157, 332-341.
https://doi.org/10.1016/j.renene.2020.05.002
[21]. Zhang, F.; Bunterngsook, B.; Li, J.-X.; Zhao, X.-Q.; Champreda, V.; Liu, C.-G.; Bai, F.-W. Regulation and production of lignocellulolytic enzymes from Trichoderma reesei for biofuels production. In Advances in Bioenergy; Elsevier, 2019; pp. 79-119.
https://doi.org/10.1016/bs.aibe.2019.03.001
[22]. Fang, H.; Zhao, R.; Li, C.; Zhao, C. Simultaneous enhancement of the beta-exo synergism and exo-exo synergism in Trichoderma reesei cellulase to increase the cellulose degrading capability. Microb. Cell Fact. 2019, 18, 9.
https://doi.org/10.1186/s12934-019-1060-x
[23]. MacAskill, J. J.; Suckling, I. D.; Lloyd, J. A.; Manley-Harris, M. Unravelling the effect of pretreatment severity on the balance of cellulose accessibility and substrate composition on enzymatic digestibility of steam-pretreated softwood. Biomass Bioenergy 2018, 109, 284-290.
https://doi.org/10.1016/j.biombioe.2017.12.018
[24]. Woiciechowski, A. L.; Pandey, A.; Machado, C. M. M.; Cardoso, E. B.; Soccol, C. R. Hydrolysis of coffee husk: Process optimization to recover its fermentable sugar. In Coffee Biotechnology and Quality; Springer Netherlands: Dordrecht, 2000; pp. 409-417.
https://doi.org/10.1007/978-94-017-1068-8_38
[25]. Nava-Valente, N.; Del Ángel-Coronel, O. A.; Atenodoro-Alonso, J.; López-Escobar, L. A. Effect of thermal and acid pre-treatment on increasing organic loading rate of anaerobic digestion of coffee pulp for biogas production. Biomass Convers. Biorefin. 2021, https://doi.org/10.1007/s13399-021-01529-3.
https://doi.org/10.1007/s13399-021-01529-3
[26]. Silva, N. C. S.; Fonseca, Y. A.; Camargos, A. B.; Lima, A. L. D.; Ribeiro, M. C.; Gurgel, L. V. A.; Lobo Baêta, B. E. Pretreatment and enzymatic hydrolysis of coffee husk for the production of potentially fermentable sugars. J. Chem. Technol. Biotechnol. 2022, 97, 676-688.
https://doi.org/10.1002/jctb.6950
[27]. Menezes, E. G. T.; do Carmo, J. R.; Alves, J. G. L. F.; Menezes, A. G. T.; Guimarães, I. C.; Queiroz, F.; Pimenta, C. J. Optimization of alkaline pretreatment of coffee pulp for production of bioethanol. Biotechnol. Prog. 2014, 30, 451-462.
https://doi.org/10.1002/btpr.1856
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.14.2.172-183.2391

















European Journal of Chemistry 2023, 14(2), 172-183 | doi: https://doi.org/10.5155/eurjchem.14.2.172-183.2391 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.