European Journal of Chemistry 2023, 14(2), 297-302 | doi: https://doi.org/10.5155/eurjchem.14.2.297-302.2405 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Newer chalcone scaffolds with reactive functional groups: Process, spectral and single crystal XRD studies


Niteen Borane (1) orcid , Amar Ghanshyam Deshmukh (2) orcid , Nidhi Harnesh Oza (3) orcid , Rajamouli Boddula (4) orcid , Paresh Narayan Patel (5,*) orcid

(1) Laboratory of Bio-Organic Chemistry, Tarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli - 394350, Gujarat, India
(2) Laboratory of Bio-Organic Chemistry, Tarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli - 394350, Gujarat, India
(3) Laboratory of Bio-Organic Chemistry, Tarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli - 394350, Gujarat, India
(4) Laboratory of Bio-Organic Chemistry, Tarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli - 394350, Gujarat, India
(5) Laboratory of Bio-Organic Chemistry, Tarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli - 394350, Gujarat, India
(*) Corresponding Author

Received: 25 Dec 2022 | Revised: 25 Mar 2023 | Accepted: 30 Mar 2023 | Published: 30 Jun 2023 | Issue Date: June 2023

Abstract


Chalcones are versatile scaffolds for the synthesis of various heterocyclic systems with commercial utility. This work describes the synthesis of five novel chalcone derivatives. Syntheses were performed by a simple one-pot, straightforward Claisen-Schmidt condensation catalyzed with pyrrolidine and KOH. The chalcones were prepared by condensation of 4-formylbenzonitrile with different aromatic ketones at room temperature. The structures of all compounds have been investigated by FT-IR, NMR, and HR-MS spectroscopy. In addition, one chalcone structure was characterized by single-crystal XRD study. Crystal data for C21H15NO2 (Ch2): monoclinic, space group P21/c (no. 14), a = 6.5694(3) Å, b = 33.2697(15) Å, c = 7.4516(4) Å, β = 97.563(2)°, V = 1614.47(14) Å3, Z = 4, T = 293(2) K, μ(MoKα) = 0.083 mm-1, Dcalc = 1.289 g/cm3, 16000 reflections measured (4.898° ≤ 2Θ ≤ 49.99°), 2822 unique (Rint = 0.0249, Rsigma = 0.0196) which were used in all calculations. The final R1 was 0.0484 (I > 2σ(I)) and wR2 was 0.1257 (all data). The absorption maxima of all novel products were evaluated by UV-visible spectroscopy. These well-established structures of all newly prepared chalcone scaffolds with reactive functional groups (i.e. nitrile and 2-propenone) can be exploited as a crucial intermediate in the synthesis of new heterocyclic scaffolds with fluorescence and other applications.


Announcements


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).

2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).

3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).


Editor-in-Chief
European Journal of Chemistry

Keywords


Nitrile; Chalcone; Pyrrolidine; Heterocycle; Single-crystal XRD; 4-Formylbenzonitrile

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.14.2.297-302.2405

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 120 times | icon graph PDF Article downloaded 31 times

Funding information


The work was financially supported by the GUJCOST, Government of India (Project No. GUJCOST/2020-21/2012).

References


[1]. Dong, F.; Jian, C.; Zhenghao, F.; Kai, G.; Zuliang, L. Synthesis of chalcones via Claisen-Schmidt condensation reaction catalyzed by acyclic acidic ionic liquids. Catal. Commun. 2008, 9, 1924-1927.
https://doi.org/10.1016/j.catcom.2008.03.023

[2]. Durairaj, M.; Sivakumar, S.; Gnanendra, S. Chemical synthesis of chalcones by claisen-Schmidt condensation reaction and its characterization. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 2311-2315.
https://doi.org/10.22214/ijraset.2018.5379

[3]. Bohm, B. A. Introduction to flavonoids; CRC Press: Boca Raton, FL, 1999.

[4]. Gao, F.; Huang, G.; Xiao, J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure-activity relationship. Med. Res. Rev. 2020, 40, 2049-2084.
https://doi.org/10.1002/med.21698

[5]. Mahapatra, D. K.; Bharti, S. K.; Asati, V. Chalcone derivatives: Anti-inflammatory potential and molecular targets perspectives. Curr. Top. Med. Chem. 2017, 17, 3146-3169.
https://doi.org/10.2174/1568026617666170914160446

[6]. Rocha, S.; Ribeiro, D.; Fernandes, E.; Freitas, M. A systematic review on anti-diabetic properties of chalcones. Curr. Med. Chem. 2020, 27, 2257-2321.
https://doi.org/10.2174/0929867325666181001112226

[7]. Xu, S.; Chen, M.; Chen, W.; Hui, J.; Ji, J.; Hu, S.; Zhou, J.; Wang, Y.; Liang, G. Chemopreventive effect of chalcone derivative, L2H17, in colon cancer development. BMC Cancer 2015, 15, 870.
https://doi.org/10.1186/s12885-015-1901-x

[8]. Lin, Y.; Zhang, M.; Lu, Q.; Xie, J.; Wu, J.; Chen, C. A novel chalcone derivative exerts anti-inflammatory and anti-oxidant effects after acute lung injury. Aging (Albany NY) 2019, 11, 7805-7816.
https://doi.org/10.18632/aging.102288

[9]. Henry, E. J.; Bird, S. J.; Gowland, P.; Collins, M.; Cassella, J. P. Ferrocenyl chalcone derivatives as possible antimicrobial agents. J. Antibiot. (Tokyo) 2020, 73, 299-308.
https://doi.org/10.1038/s41429-020-0280-y

[10]. de Mello, M. V. P.; Abrahim-Vieira, B. de A.; Domingos, T. F. S.; de Jesus, J. B.; de Sousa, A. C. C.; Rodrigues, C. R.; Souza, A. M. T. de A comprehensive review of chalcone derivatives as antileishmanial agents. Eur. J. Med. Chem. 2018, 150, 920-929.
https://doi.org/10.1016/j.ejmech.2018.03.047

[11]. Cheng, P.; Yang, L.; Huang, X.; Wang, X.; Gong, M. Chalcone hybrids and their antimalarial activity. Arch. Pharm. (Weinheim) 2020, 353, e1900350.
https://doi.org/10.1002/ardp.201900350

[12]. Rajesh Kumar, P. C.; Ravindrachary, V.; Janardhana, K.; Poojary, B. Structural and optical properties of a new chalcone single crystal. J. Cryst. Growth 2012, 354, 182-187.
https://doi.org/10.1016/j.jcrysgro.2012.06.006

[13]. Anuradha, G.; Vasuki, G.; Khan, I. A.; Kulkarni, M. V. Crystal and Molecular Structure of N-[2-(6-Methoxy-2-oxo-2H-Chromen-4-yl-Benzofuran-3-yl]- Benzamide. Cryst. Struct. Theory Appl. 2012, 01, 107-113.
https://doi.org/10.4236/csta.2012.13020

[14]. Xie, Z.; Chen, C.; Xu, S.; Li, J.; Zhang, Y.; Liu, S.; Xu, J.; Chi, Z. White-light emission strategy of a single organic compound with aggregation-induced emission and delayed fluorescence properties. Angew. Chem. Int. Ed Engl. 2015, 54, 7181-7184.
https://doi.org/10.1002/anie.201502180

[15]. Tandel, S. N.; Deshmukh, A. G.; Rana, B. U.; Patel, P. N. Studies of novel benzofuran based chalcone scaffolds: A dual spectroscopic approach as selective hydrazine sensor. Chem. Phys. Lett. 2023, 817, 140426.
https://doi.org/10.1016/j.cplett.2023.140426

[16]. Ali, M. K. M.; Elzupir, A. O.; Ibrahem, M. A.; Suliman, I. I.; Modwi, A.; Idriss, H.; Ibnaouf, K. H. Characterization of optical and morphological properties of chalcone thin films for optoelectronics applications. Optik (Stuttg.) 2017, 145, 529-533.
https://doi.org/10.1016/j.ijleo.2017.08.044

[17]. Dhanaraj, P. V.; Rajesh, N. P.; Vinitha, G.; Bhagavannarayana, G. Crystal structure and characterization of a novel organic optical crystal: 2-Aminopyridinium trichloroacetate. Mater. Res. Bull. 2011, 46, 726-731.
https://doi.org/10.1016/j.materresbull.2011.01.013

[18]. STOE IPDS diffractometer control software, version 2.87. Stoe & Cie GmbH Darmstadt, Germany.

[19]. Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. SIR2004: an improved tool for crystal structure determination and refinement. J. Appl. Crystallogr. 2005, 38, 381-388.
https://doi.org/10.1107/S002188980403225X

[20]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[21]. Bruker (2012). APEX. Bruker AXS Inc., Madison, Wisconsin, USA.

[22]. Bruker (2012). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

[23]. Bruker (2012). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

[24]. Farrugia, L. J. WinGXandORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849-854.
https://doi.org/10.1107/S0021889812029111

[25]. Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453-457.
https://doi.org/10.1107/S002188980600731X

[26]. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148-155.
https://doi.org/10.1107/S090744490804362X

[27]. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[28]. Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. CRYSTALS version 12: software for guided crystal structure analysis. J. Appl. Crystallogr. 2003, 36, 1487-1487.
https://doi.org/10.1107/S0021889803021800

[29]. Patel, P. N.; Chadha, A. Synthesis, single crystal structure and spectroscopic aspects of Benzo[b]thiophene-3-carbaldehyde based chalcones. J. Chem. Crystallogr. 2016, 46, 245-251.
https://doi.org/10.1007/s10870-016-0653-z

[30]. Rai, S.; Patel, P. N.; Chadha, A. Preparation, characterisation, and crystal structure analysis of (2E,2′E)-3,3′-(1,4-phenylene)bis(1-(2-aminophenyl)prop-2-en-1-one. Crystallogr. Rep. 2016, 61, 1086-1089.
https://doi.org/10.1134/S1063774516070099

[31]. Patel, P. N.; Chadha, A. A simple metal free highly diastereoselective synthesis of heteroaryl substituted (±) cyclohexanols by a branched domino reaction. Tetrahedron 2018, 74, 204-216.
https://doi.org/10.1016/j.tet.2017.11.070

[32]. Tandel, S.; Patel, N. C.; Kanvah, S.; Patel, P. N. An efficient protocol for the synthesis of novel hetero-aryl chalcone: A versatile synthon for several heterocyclic scaffolds and sensors. J. Mol. Struct. 2022, 1269, 133808.
https://doi.org/10.1016/j.molstruc.2022.133808

[33]. Patel, P. N.; Desai, D. H.; Patel, N. C.; Deshmukh, A. G. Efficient multicomponent processes for synthesis of novel poly-nuclear hetero aryl substituted terpyridine scaffolds: Single crystal XRD study. J. Mol. Struct. 2022, 1250, 131737.
https://doi.org/10.1016/j.molstruc.2021.131737

[34]. Patel, P. N.; Desai, D. H.; Patel, N. C. Synthesis, spectral, and single crystal XRD studies of novel terpyridine derivatives of benzofuran-2-carbaldehyde and their Cu(II) complex. Russ. J. Coord. Chem. 2021, 47, 909-914.
https://doi.org/10.1134/S1070328421120010


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Borane, N.; Deshmukh, A.; Oza, N.; Boddula, R.; Patel, P. Eur. J. Chem. 2023, 14(2), 297-302. doi:10.5155/eurjchem.14.2.297-302.2405
Borane, N.; Deshmukh, A.; Oza, N.; Boddula, R.; Patel, P. Newer chalcone scaffolds with reactive functional groups: Process, spectral and single crystal XRD studies. Eur. J. Chem. 2023, 14(2), 297-302. doi:10.5155/eurjchem.14.2.297-302.2405
Borane, N., Deshmukh, A., Oza, N., Boddula, R., & Patel, P. (2023). Newer chalcone scaffolds with reactive functional groups: Process, spectral and single crystal XRD studies. European Journal of Chemistry, 14(2), 297-302. doi:10.5155/eurjchem.14.2.297-302.2405
Borane, Niteen, Amar Ghanshyam Deshmukh, Nidhi Harnesh Oza, Rajamouli Boddula, & Paresh Narayan Patel. "Newer chalcone scaffolds with reactive functional groups: Process, spectral and single crystal XRD studies." European Journal of Chemistry [Online], 14.2 (2023): 297-302. Web. 4 Oct. 2023
Borane, Niteen, Deshmukh, Amar, Oza, Nidhi, Boddula, Rajamouli, AND Patel, Paresh. "Newer chalcone scaffolds with reactive functional groups: Process, spectral and single crystal XRD studies" European Journal of Chemistry [Online], Volume 14 Number 2 (30 June 2023)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.14.2.297-302.2405


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2023, 14(2), 297-302 | doi: https://doi.org/10.5155/eurjchem.14.2.297-302.2405 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.