European Journal of Chemistry

Green synthesis of silver nano-catalyst using ionic liquid and their photocatalytic application to the reduction of p-nitrophenol

Crossmark


Main Article Content

Ravi Ranjan
Durga Gupta
Madhulata Shukla

Abstract

Ionic liquids (ILs) carrying special properties can act as electronic as well as steric stabilisers by preventing nanoparticle (NP) growth and NP aggregation. The effect of visible light on the catalytic properties of silver nanoparticles is a hot topic of extensive research nowadays. The present report demonstrates the current developments in the green synthesis of silver nanoparticles in ionic liquids and a detailed study of the room-temperature catalytic and photocatalytic reduction of p-nitrophenol (PNP) to p-aminophenol (AP). The Ag nanoparticles (AgNPs) functionalised by ionic liquids are prepared in the 40-140 nm range and are found to be spherical in shape. The photocatalytic properties of these nanocomposites for the reduction of PNP to AP were studied. Photocatalytic degradation of PNP was also analysed by these composite nanostructures. The plasmonic photocatalytic properties of the synthesised AgNPs revealed activity significantly higher than that of the room-temperature catalysis. Density functional theory calculations showed that strong interactions exist between nanoclusters and ILs. Natural bond orbital analysis showed that IL also activates the nanoparticles for further photocatalytic reduction by transferring electron transfer from the donor (IL) to the acceptor (Ag cluster) and activating the silver NPs for further catalytic reaction. Photocatalytic degradation of PNP (reduction of PNP to AP) using NP in the absence of light follows first-order kinetics, whereas in the presence of light it follows zero-order reaction kinetics.


icon graph This Abstract was viewed 530 times | icon graph Article PDF downloaded 296 times

How to Cite
(1)
Ranjan, R.; Gupta, D.; Shukla, M. Green Synthesis of Silver Nano-Catalyst Using Ionic Liquid and Their Photocatalytic Application to the Reduction of P-Nitrophenol. Eur. J. Chem. 2023, 14, 316-322.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Kumar, S.; Kuntail, J.; Sahu, D. K.; Yadav, V. S.; Sinha, I. Green synthesis of curcumin functionalized Au nanoparticles by visible light photo-reduction. Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci. (2004) 2023, https://doi.org/10.1007/s12648-023-02617-y.
https://doi.org/10.1007/s12648-023-02617-y

[2]. Verma, A.; Shukla, M.; Kumar, S.; Pal, S.; Sinha, I. Mechanism of visible light enhanced catalysis over curcumin functionalized Ag nanocatalysts. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 240, 118534.
https://doi.org/10.1016/j.saa.2020.118534

[3]. Janiak, C. Ionic liquids for the synthesis and stabilization of metal nanoparticles. Z. Naturforsch. B J. Chem. Sci. 2013, 68, 1059-1089.
https://doi.org/10.5560/znb.2013-3140

[4]. Gautam, P.; De, A. K.; Sinha, I.; Behera, C. K.; Singh, K. K. Genesis of copper oxide nanoparticles from waste printed circuit boards and evaluation of their photocatalytic activity. Environ. Res. 2023, 229, 115951.
https://doi.org/10.1016/j.envres.2023.115951

[5]. Endres, F. Physical chemistry of ionic liquids. Phys. Chem. Chem. Phys. 2010, 12, 1648.
https://doi.org/10.1039/c001176m

[6]. Marcos Esteban, R.; Meyer, H.; Kim, J.; Gemel, C.; Fischer, R. A.; Janiak, C. Comparative synthesis of cu and cu2O nanoparticles from different copper precursors in an ionic liquid or propylene carbonate. Eur. J. Inorg. Chem. 2016, 2016, 2106-2113.
https://doi.org/10.1002/ejic.201500969

[7]. Shukla, M.; Srivastava, N.; Sah, S. Interactions and transitions in imidazolium cation based ionic liquids. In Ionic Liquids - Classes and Properties; InTech, 2011.
https://doi.org/10.5772/23845

[8]. Swadźba-Kwaśny, M.; Chancelier, L.; Ng, S.; Manyar, H. G.; Hardacre, C.; Nockemann, P. Facile in situ synthesis of nanofluids based on ionic liquids and copper oxide clusters and nanoparticles. Dalton Trans. 2012, 41, 219-227.
https://doi.org/10.1039/C1DT11578B

[9]. Ma, Q.; Ping, L.; Zhang, H. M.; Yang, J.; Wang, Q. Ionic liquid synthesis of luminescent nano-cubes and their microstructure characterization. J. Mol. Struct. 2015, 1091, 1-5.
https://doi.org/10.1016/j.molstruc.2015.02.061

[10]. Watzky, M. A.; Finke, R. G. Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: Slow, continuous nucleation and fast autocatalytic surface growth. J. Am. Chem. Soc. 1997, 119, 10382-10400.
https://doi.org/10.1021/ja9705102

[11]. Scheeren, C. W.; Machado, G.; Teixeira, S. R.; Morais, J.; Domingos, J. B.; Dupont, J. Synthesis and characterization of pt(0) nanoparticles in imidazolium ionic liquids. J. Phys. Chem. B 2006, 110, 13011-13020.
https://doi.org/10.1021/jp0623037

[12]. He, Z.; Alexandridis, P. Nanoparticles in ionic liquids: interactions and organization. Phys. Chem. Chem. Phys. 2015, 17, 18238-18261.
https://doi.org/10.1039/C5CP01620G

[13]. Bhargava, B. L.; Balasubramanian, S.; Klein, M. L. Modelling room temperature ionic liquids. Chem. Commun. (Camb.) 2008, 3339-3351.
https://doi.org/10.1039/b805384g

[14]. Capece, A. Synthesis of silver nanoparticles in ionic liquids by electron irradiation. APS 2018, LW1.072.

[15]. Shipway, A. N.; Katz, E.; Willner, I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chemphyschem 2000, 1, 18-52.
https://doi.org/10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L

[16]. Shukla, M.; Verma, A.; Kumar, S.; Pal, S.; Sinha, I. Experimental and DFT calculation study of interaction between silver nanoparticle and 1-butyl-3-methyl imidazolium tetrafluoroborate ionic liquid. Heliyon 2021, 7, e06065.
https://doi.org/10.1016/j.heliyon.2021.e06065

[17]. Migowski, P.; Machado, G.; Texeira, S. R.; Alves, M. C. M.; Morais, J.; Traverse, A.; Dupont, J. Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids. Phys. Chem. Chem. Phys. 2007, 9, 4814-4821.
https://doi.org/10.1039/b703979d

[18]. Ruta, M.; Laurenczy, G.; Dyson, P. J.; Kiwi-Minsker, L. Pd nanoparticles in a supported ionic liquid phase: Highly stable catalysts for selective acetylene hydrogenation under continuous-flow conditions. J. Phys. Chem. C Nanomater. Interfaces 2008, 112, 17814-17819.
https://doi.org/10.1021/jp806603f

[19]. Redel, E.; Thomann, R.; Janiak, C. First correlation of nanoparticle size-dependent formation with the ionic liquid anion molecular volume. Inorg. Chem. 2008, 47, 14-16.
https://doi.org/10.1021/ic702071w

[20]. Wender, H.; Migowski, P.; Feil, A. F.; Teixeira, S. R.; Dupont, J. Sputtering deposition of nanoparticles onto liquid substrates: Recent advances and future trends. Coord. Chem. Rev. 2013, 257, 2468-2483.
https://doi.org/10.1016/j.ccr.2013.01.013

[21]. Gholami, A.; Shams, M. S.; Abbaszadegan, A.; Nabavizadeh, M. Ionic liquids as capping agents of silver nanoparticles. Part II: Antimicrobial and cytotoxic study. Green Process. Synth. 2021, 10, 585-593.
https://doi.org/10.1515/gps-2021-0054

[22]. Liu, T.; Baek, D. R.; Kim, J. S.; Joo, S.-W.; Lim, J. K. Green synthesis of silver nanoparticles with size distribution depending on reducing species in glycerol at ambient pH and temperatures. ACS Omega 2020, 5, 16246-16254.
https://doi.org/10.1021/acsomega.0c02066

[23]. Wang, W.; Peng, X.; Xiong, H.; Wen, W.; Bao, T.; Zhang, X.; Wang, S. Synthesis and properties enhancement of metal nanoclusters templated on a biological molecule/ionic liquids complex. New J Chem 2017, 41, 3766-3772.
https://doi.org/10.1039/C7NJ00642J

[24]. Jo, J.; Cho, S.-P.; Lim, J. K. Template synthesis of hollow silver hexapods using hexapod-shaped silver oxide mesoparticles. J. Colloid Interface Sci. 2015, 448, 208-214.
https://doi.org/10.1016/j.jcis.2015.02.026

[25]. Fang, J.; Liu, S.; Li, Z. Polyhedral silver mesocages for single particle surface-enhanced Raman scattering-based biosensor. Biomaterials 2011, 32, 4877-4884.
https://doi.org/10.1016/j.biomaterials.2011.03.029

[26]. Zhang, X.; Hicks, E. M.; Zhao, J.; Schatz, G. C.; Van Duyne, R. P. Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography. Nano Lett. 2005, 5, 1503-1507.
https://doi.org/10.1021/nl050873x

[27]. Gomes, J. F.; Garcia, A. C.; Ferreira, E. B.; Pires, C.; Oliveira, V. L.; Tremiliosi-Filho, G.; Gasparotto, L. H. S. New insights into the formation mechanism of Ag, Au and AgAu nanoparticles in aqueous alkaline media: alkoxides from alcohols, aldehydes and ketones as universal reducing agents. Phys. Chem. Chem. Phys. 2015, 17, 21683-21693.
https://doi.org/10.1039/C5CP02155C

[28]. Benet, W. E.; Lewis, G. S.; Yang, L. Z.; Hughes, D. E. P. The mechanism of the reaction of the Tollens reagent. J. Chem. Res. 2011, 35, 675-677.
https://doi.org/10.3184/174751911X13206824040536

[29]. Materials and Processes Simulations Platform, Version 4.2, Scienomics SARL, Paris, France.

[30]. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[31]. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.
https://doi.org/10.1063/1.464913

[32]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Gaussian 16, Revision C.01, Wallingford CT, 2016.

[33]. Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270-283.
https://doi.org/10.1063/1.448799

[34]. Verma, A.; Gupta, R. K.; Shukla, M.; Malviya, M.; Sinha, I. Ag-Cu bimetallic nanoparticles as efficient oxygen reduction reaction electrocatalysts in alkaline media. J. Nanosci. Nanotechnol. 2020, 20, 1765-1772.
https://doi.org/10.1166/jnn.2020.17154

[35]. Singh, R.; Sahu, S. K.; Thangaraj, M. Biosynthesis of silver nanoparticles by marine invertebrate (polychaete) and assessment of its efficacy against human pathogens. J. Nanoparticles 2014, 2014, 1-7.
https://doi.org/10.1155/2014/718240

[36]. Theivasanthi, T.; Alagar, M. Electrolytic synthesis and characterizations of silver nanopowder. 2011, https://arxiv.org/abs/1111.0260.

[37]. Verma, A. D.; Jain, N.; Singha, S. K.; Quraishi, M. A.; Sinha, I. Green synthesis and catalytic application of curcumin stabilized silver nanoparticles. J. Chem. Sci. (Bangalore) 2016, 128, 1871-1878.
https://doi.org/10.1007/s12039-016-1189-7

[38]. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899-926.
https://doi.org/10.1021/cr00088a005

[39]. Weinhold, F.; Landis, C. R.; Glendening, E. D. What is NBO analysis and how is it useful? Int. Rev. Phys. Chem. 2016, 35, 399-440.
https://doi.org/10.1080/0144235X.2016.1192262

[40]. Shukla, M.; Sinha, I. Catalytic activation of nitrobenzene on PVP passivated silver cluster: A DFT investigation. Int. J. Quantum Chem. 2018, 118, e25490.
https://doi.org/10.1002/qua.25490

[41]. Kästner, C.; Thünemann, A. F. Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity. Langmuir 2016, 32, 7383-7391.
https://doi.org/10.1021/acs.langmuir.6b01477

[42]. Shimoga, G.; Palem, R. R.; Lee, S.-H.; Kim, S.-Y. Catalytic degradability of p-nitrophenol using ecofriendly silver nanoparticles. Metals (Basel) 2020, 10, 1661.
https://doi.org/10.3390/met10121661

Supporting Agencies

Ramgarh, Kaimur, Veer Kunwar Singh University, 821110, Bihar, India
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).