European Journal of Chemistry 2023, 14(3), 316-322 | doi: https://doi.org/10.5155/eurjchem.14.3.316-322.2436 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Green synthesis of silver nano-catalyst using ionic liquid and their photocatalytic application to the reduction of p-nitrophenol


Ravi Ranjan (1) orcid , Durga Gupta (2) orcid , Madhulata Shukla (3,*) orcid

(1) Department of Chemistry, Gram Bharti College, Ramgarh, Kaimur, Veer Kunwar Singh University, 821110, Bihar, India
(2) Department of Chemistry, Gram Bharti College, Ramgarh, Kaimur, Veer Kunwar Singh University, 821110, Bihar, India
(3) Department of Chemistry, Gram Bharti College, Ramgarh, Kaimur, Veer Kunwar Singh University, 821110, Bihar, India
(*) Corresponding Author

Received: 02 Apr 2023 | Revised: 28 May 2023 | Accepted: 04 Jun 2023 | Published: 30 Sep 2023 | Issue Date: September 2023

Abstract


Ionic liquids (ILs) carrying special properties can act as electronic as well as steric stabilisers by preventing nanoparticle (NP) growth and NP aggregation. The effect of visible light on the catalytic properties of silver nanoparticles is a hot topic of extensive research nowadays. The present report demonstrates the current developments in the green synthesis of silver nanoparticles in ionic liquids and a detailed study of the room-temperature catalytic and photocatalytic reduction of p-nitrophenol (PNP) to p-aminophenol (AP). The Ag nanoparticles (AgNPs) functionalised by ionic liquids are prepared in the 40-140 nm range and are found to be spherical in shape. The photocatalytic properties of these nanocomposites for the reduction of PNP to AP were studied. Photocatalytic degradation of PNP was also analysed by these composite nanostructures. The plasmonic photocatalytic properties of the synthesised AgNPs revealed activity significantly higher than that of the room-temperature catalysis. Density functional theory calculations showed that strong interactions exist between nanoclusters and ILs. Natural bond orbital analysis showed that IL also activates the nanoparticles for further photocatalytic reduction by transferring electron transfer from the donor (IL) to the acceptor (Ag cluster) and activating the silver NPs for further catalytic reaction. Photocatalytic degradation of PNP (reduction of PNP to AP) using NP in the absence of light follows first-order kinetics, whereas in the presence of light it follows zero-order reaction kinetics.


Announcements


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).

2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).

3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).


Editor-in-Chief
European Journal of Chemistry

Keywords


Ionic liquid; Nanoparticle; NBO analysis; DFT calculation; Green synthesis; Photocatalytic reduction

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.14.3.316-322.2436

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 190 times | icon graph PDF Article downloaded 45 times

Funding information


Ramgarh, Kaimur, Veer Kunwar Singh University, 821110, Bihar, India

References


[1]. Kumar, S.; Kuntail, J.; Sahu, D. K.; Yadav, V. S.; Sinha, I. Green synthesis of curcumin functionalized Au nanoparticles by visible light photo-reduction. Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci. (2004) 2023, https://doi.org/10.1007/s12648-023-02617-y.
https://doi.org/10.1007/s12648-023-02617-y

[2]. Verma, A.; Shukla, M.; Kumar, S.; Pal, S.; Sinha, I. Mechanism of visible light enhanced catalysis over curcumin functionalized Ag nanocatalysts. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 240, 118534.
https://doi.org/10.1016/j.saa.2020.118534

[3]. Janiak, C. Ionic liquids for the synthesis and stabilization of metal nanoparticles. Z. Naturforsch. B J. Chem. Sci. 2013, 68, 1059-1089.
https://doi.org/10.5560/znb.2013-3140

[4]. Gautam, P.; De, A. K.; Sinha, I.; Behera, C. K.; Singh, K. K. Genesis of copper oxide nanoparticles from waste printed circuit boards and evaluation of their photocatalytic activity. Environ. Res. 2023, 229, 115951.
https://doi.org/10.1016/j.envres.2023.115951

[5]. Endres, F. Physical chemistry of ionic liquids. Phys. Chem. Chem. Phys. 2010, 12, 1648.
https://doi.org/10.1039/c001176m

[6]. Marcos Esteban, R.; Meyer, H.; Kim, J.; Gemel, C.; Fischer, R. A.; Janiak, C. Comparative synthesis of cu and cu2O nanoparticles from different copper precursors in an ionic liquid or propylene carbonate. Eur. J. Inorg. Chem. 2016, 2016, 2106-2113.
https://doi.org/10.1002/ejic.201500969

[7]. Shukla, M.; Srivastava, N.; Sah, S. Interactions and transitions in imidazolium cation based ionic liquids. In Ionic Liquids - Classes and Properties; InTech, 2011.
https://doi.org/10.5772/23845

[8]. Swadźba-Kwaśny, M.; Chancelier, L.; Ng, S.; Manyar, H. G.; Hardacre, C.; Nockemann, P. Facile in situ synthesis of nanofluids based on ionic liquids and copper oxide clusters and nanoparticles. Dalton Trans. 2012, 41, 219-227.
https://doi.org/10.1039/C1DT11578B

[9]. Ma, Q.; Ping, L.; Zhang, H. M.; Yang, J.; Wang, Q. Ionic liquid synthesis of luminescent nano-cubes and their microstructure characterization. J. Mol. Struct. 2015, 1091, 1-5.
https://doi.org/10.1016/j.molstruc.2015.02.061

[10]. Watzky, M. A.; Finke, R. G. Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: Slow, continuous nucleation and fast autocatalytic surface growth. J. Am. Chem. Soc. 1997, 119, 10382-10400.
https://doi.org/10.1021/ja9705102

[11]. Scheeren, C. W.; Machado, G.; Teixeira, S. R.; Morais, J.; Domingos, J. B.; Dupont, J. Synthesis and characterization of pt(0) nanoparticles in imidazolium ionic liquids. J. Phys. Chem. B 2006, 110, 13011-13020.
https://doi.org/10.1021/jp0623037

[12]. He, Z.; Alexandridis, P. Nanoparticles in ionic liquids: interactions and organization. Phys. Chem. Chem. Phys. 2015, 17, 18238-18261.
https://doi.org/10.1039/C5CP01620G

[13]. Bhargava, B. L.; Balasubramanian, S.; Klein, M. L. Modelling room temperature ionic liquids. Chem. Commun. (Camb.) 2008, 3339-3351.
https://doi.org/10.1039/b805384g

[14]. Capece, A. Synthesis of silver nanoparticles in ionic liquids by electron irradiation. APS 2018, LW1.072.

[15]. Shipway, A. N.; Katz, E.; Willner, I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chemphyschem 2000, 1, 18-52.
https://doi.org/10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L

[16]. Shukla, M.; Verma, A.; Kumar, S.; Pal, S.; Sinha, I. Experimental and DFT calculation study of interaction between silver nanoparticle and 1-butyl-3-methyl imidazolium tetrafluoroborate ionic liquid. Heliyon 2021, 7, e06065.
https://doi.org/10.1016/j.heliyon.2021.e06065

[17]. Migowski, P.; Machado, G.; Texeira, S. R.; Alves, M. C. M.; Morais, J.; Traverse, A.; Dupont, J. Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids. Phys. Chem. Chem. Phys. 2007, 9, 4814-4821.
https://doi.org/10.1039/b703979d

[18]. Ruta, M.; Laurenczy, G.; Dyson, P. J.; Kiwi-Minsker, L. Pd nanoparticles in a supported ionic liquid phase: Highly stable catalysts for selective acetylene hydrogenation under continuous-flow conditions. J. Phys. Chem. C Nanomater. Interfaces 2008, 112, 17814-17819.
https://doi.org/10.1021/jp806603f

[19]. Redel, E.; Thomann, R.; Janiak, C. First correlation of nanoparticle size-dependent formation with the ionic liquid anion molecular volume. Inorg. Chem. 2008, 47, 14-16.
https://doi.org/10.1021/ic702071w

[20]. Wender, H.; Migowski, P.; Feil, A. F.; Teixeira, S. R.; Dupont, J. Sputtering deposition of nanoparticles onto liquid substrates: Recent advances and future trends. Coord. Chem. Rev. 2013, 257, 2468-2483.
https://doi.org/10.1016/j.ccr.2013.01.013

[21]. Gholami, A.; Shams, M. S.; Abbaszadegan, A.; Nabavizadeh, M. Ionic liquids as capping agents of silver nanoparticles. Part II: Antimicrobial and cytotoxic study. Green Process. Synth. 2021, 10, 585-593.
https://doi.org/10.1515/gps-2021-0054

[22]. Liu, T.; Baek, D. R.; Kim, J. S.; Joo, S.-W.; Lim, J. K. Green synthesis of silver nanoparticles with size distribution depending on reducing species in glycerol at ambient pH and temperatures. ACS Omega 2020, 5, 16246-16254.
https://doi.org/10.1021/acsomega.0c02066

[23]. Wang, W.; Peng, X.; Xiong, H.; Wen, W.; Bao, T.; Zhang, X.; Wang, S. Synthesis and properties enhancement of metal nanoclusters templated on a biological molecule/ionic liquids complex. New J Chem 2017, 41, 3766-3772.
https://doi.org/10.1039/C7NJ00642J

[24]. Jo, J.; Cho, S.-P.; Lim, J. K. Template synthesis of hollow silver hexapods using hexapod-shaped silver oxide mesoparticles. J. Colloid Interface Sci. 2015, 448, 208-214.
https://doi.org/10.1016/j.jcis.2015.02.026

[25]. Fang, J.; Liu, S.; Li, Z. Polyhedral silver mesocages for single particle surface-enhanced Raman scattering-based biosensor. Biomaterials 2011, 32, 4877-4884.
https://doi.org/10.1016/j.biomaterials.2011.03.029

[26]. Zhang, X.; Hicks, E. M.; Zhao, J.; Schatz, G. C.; Van Duyne, R. P. Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography. Nano Lett. 2005, 5, 1503-1507.
https://doi.org/10.1021/nl050873x

[27]. Gomes, J. F.; Garcia, A. C.; Ferreira, E. B.; Pires, C.; Oliveira, V. L.; Tremiliosi-Filho, G.; Gasparotto, L. H. S. New insights into the formation mechanism of Ag, Au and AgAu nanoparticles in aqueous alkaline media: alkoxides from alcohols, aldehydes and ketones as universal reducing agents. Phys. Chem. Chem. Phys. 2015, 17, 21683-21693.
https://doi.org/10.1039/C5CP02155C

[28]. Benet, W. E.; Lewis, G. S.; Yang, L. Z.; Hughes, D. E. P. The mechanism of the reaction of the Tollens reagent. J. Chem. Res. 2011, 35, 675-677.
https://doi.org/10.3184/174751911X13206824040536

[29]. Materials and Processes Simulations Platform, Version 4.2, Scienomics SARL, Paris, France.

[30]. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[31]. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.
https://doi.org/10.1063/1.464913

[32]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Gaussian 16, Revision C.01, Wallingford CT, 2016.

[33]. Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270-283.
https://doi.org/10.1063/1.448799

[34]. Verma, A.; Gupta, R. K.; Shukla, M.; Malviya, M.; Sinha, I. Ag-Cu bimetallic nanoparticles as efficient oxygen reduction reaction electrocatalysts in alkaline media. J. Nanosci. Nanotechnol. 2020, 20, 1765-1772.
https://doi.org/10.1166/jnn.2020.17154

[35]. Singh, R.; Sahu, S. K.; Thangaraj, M. Biosynthesis of silver nanoparticles by marine invertebrate (polychaete) and assessment of its efficacy against human pathogens. J. Nanoparticles 2014, 2014, 1-7.
https://doi.org/10.1155/2014/718240

[36]. Theivasanthi, T.; Alagar, M. Electrolytic synthesis and characterizations of silver nanopowder. 2011, https://arxiv.org/abs/1111.0260.

[37]. Verma, A. D.; Jain, N.; Singha, S. K.; Quraishi, M. A.; Sinha, I. Green synthesis and catalytic application of curcumin stabilized silver nanoparticles. J. Chem. Sci. (Bangalore) 2016, 128, 1871-1878.
https://doi.org/10.1007/s12039-016-1189-7

[38]. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899-926.
https://doi.org/10.1021/cr00088a005

[39]. Weinhold, F.; Landis, C. R.; Glendening, E. D. What is NBO analysis and how is it useful? Int. Rev. Phys. Chem. 2016, 35, 399-440.
https://doi.org/10.1080/0144235X.2016.1192262

[40]. Shukla, M.; Sinha, I. Catalytic activation of nitrobenzene on PVP passivated silver cluster: A DFT investigation. Int. J. Quantum Chem. 2018, 118, e25490.
https://doi.org/10.1002/qua.25490

[41]. Kästner, C.; Thünemann, A. F. Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity. Langmuir 2016, 32, 7383-7391.
https://doi.org/10.1021/acs.langmuir.6b01477

[42]. Shimoga, G.; Palem, R. R.; Lee, S.-H.; Kim, S.-Y. Catalytic degradability of p-nitrophenol using ecofriendly silver nanoparticles. Metals (Basel) 2020, 10, 1661.
https://doi.org/10.3390/met10121661


How to cite


Ranjan, R.; Gupta, D.; Shukla, M. Eur. J. Chem. 2023, 14(3), 316-322. doi:10.5155/eurjchem.14.3.316-322.2436
Ranjan, R.; Gupta, D.; Shukla, M. Green synthesis of silver nano-catalyst using ionic liquid and their photocatalytic application to the reduction of p-nitrophenol. Eur. J. Chem. 2023, 14(3), 316-322. doi:10.5155/eurjchem.14.3.316-322.2436
Ranjan, R., Gupta, D., & Shukla, M. (2023). Green synthesis of silver nano-catalyst using ionic liquid and their photocatalytic application to the reduction of p-nitrophenol. European Journal of Chemistry, 14(3), 316-322. doi:10.5155/eurjchem.14.3.316-322.2436
Ranjan, Ravi, Durga Gupta, & Madhulata Shukla. "Green synthesis of silver nano-catalyst using ionic liquid and their photocatalytic application to the reduction of p-nitrophenol." European Journal of Chemistry [Online], 14.3 (2023): 316-322. Web. 8 Dec. 2023
Ranjan, Ravi, Gupta, Durga, AND Shukla, Madhulata. "Green synthesis of silver nano-catalyst using ionic liquid and their photocatalytic application to the reduction of p-nitrophenol" European Journal of Chemistry [Online], Volume 14 Number 3 (30 September 2023)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.14.3.316-322.2436


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2023, 14(3), 316-322 | doi: https://doi.org/10.5155/eurjchem.14.3.316-322.2436 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.