European Journal of Chemistry

Isotopic study of rainfall and definition of local meteoric water lines: Case of the rainfall stations of the city of Bangui in Central African Republic

Crossmark


Main Article Content

Eric Foto
Oscar Allahdin
Olga Biteman
Nicole Poumaye

Abstract

The study of the isotopic composition of rainwater discussed in this article allows isotopic characterization of rainfall recorded in the Bangui region over 11 years at two stations. It will highlight the relationships between isotopes, climatic parameters, and temporal variation before defining the local meteoric line, which constitutes the reference point for the region. The results obtained after a follow-up of eleven years without interruption showed two major physical effects, the effect of the rainfall influences more strongly the composition in isotopes, the contents in isotopes vary inversely with the precipitation. For example, heavy rainfall in August and September saw a strong depletion of δ¹⁸O and δ²H contents. These values reach up to -4.96‰ for δ¹⁸O and -28.3‰ for δ²H. Similar, although weaker, effects are observed for July and October precipitation. We also note that the isotope contents at the Bangui University station are lower than those measured at the Bangui Sodeca station located at 386 m altitude on the Lower Ubangi Hill, which is similar to a pseudo-altitude effect. The evolution of stable isotope content in water as a function of meteorological parameters (temperature, rainfall, altitude) has allowed us to determine a local meteorological line for the city of Bangui from two measuring stations defined as follows: δ2H = 7.6 × δ18O + 10.4 (R2 = 0.9909) Université de Bangui, δ2H = 8.4 × δ18O + 12.5 (R2 = 0.9909) Bangui-Sodeca and δ2H = 7.9 × δ18O + 11.3 (R2 = 0.9939) Bangui local meteoric water lines.


icon graph This Abstract was viewed 218 times | icon graph Article PDF downloaded 109 times

How to Cite
(1)
Foto, E.; Allahdin, O.; Biteman, O.; Poumaye, N. Isotopic Study of Rainfall and Definition of Local Meteoric Water Lines: Case of the Rainfall Stations of the City of Bangui in Central African Republic. Eur. J. Chem. 2023, 14, 445-450.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Celle, H.; Daniel, M.; Mudry, J.; Blavoux, B. Signal pluie et traçage par les isotopes stables en Méditerranée occidentale. Exemple de la région avignonnaise (Sud-Est de la France). C. R. Acad. Sci. (Ser. 2a) (Sci. Terre Planete/Earth Planet. Sci.) 2000, 331, 647-650.
https://doi.org/10.1016/S1251-8050(00)01469-5

[2]. Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702-1703.
https://doi.org/10.1126/science.133.3465.1702

[3]. Stewart, M. K. Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: Applications to atmospheric processes and evaporation of lakes. J. Geophys. Res. 1975, 80, 1133-1146.
https://doi.org/10.1029/JC080i009p01133

[4]. Werner, M.; Heimann, M.; Hoffmann, G. Isotopic composition and origin of polar precipitation in present and glacial climate simulations. Tellus B Chem. Phys. Meteorol. 2001, 53, 53-71.
https://doi.org/10.1034/j.1600-0889.2001.01154.x

[5]. Casado, M. Water stable isotopic composition on the East Antarctic Plateau: measurements at low temperature of the vapour composition, use as an atmospheric tracer and implication for paleoclimate studies, Ph.D. Thesis, Universite de Saint-Quentin enYveline, 2016.

[6]. Kendall, C.; Coplen, T. B. Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol. Process. 2001, 15, 1363-1393.
https://doi.org/10.1002/hyp.217

[7]. Rozanski, K.; Sonntag, C.; Münnich, K. O. Factors controlling stable isotope composition of European precipitation. Tellus A 1982, 34, 142-150.
https://doi.org/10.1111/j.2153-3490.1982.tb01801.x

[8]. Brodersen, C.; Pohl, S.; Lindenlaub, M.; Leibundgut, C.; Wilpert, K. v. Influence of vegetation structure on isotope content of throughfall and soil water. Hydrol. Process. 2000, 14, 1439-1448.
https://doi.org/10.1002/1099-1085(20000615)14:8<1439::AID-HYP985>3.0.CO;2-3

[9]. Liu, W. J.; Liu, W. Y.; Li, J. T.; Wu, Z. W.; Li, H. M. Isotope variations of throughfall, stemflow and soil water in a tropical rain forest and a rubber plantation in Xishuangbanna, SW China. Hydrol. Res. 2008, 39, 437-449.
https://doi.org/10.2166/nh.2008.110

[10]. Celle-Jeanton, H.; Travi, Y.; Blavoux, B. Isotopic typology of the precipitation in the Western Mediterranean Region at three different time scales. Geophys. Res. Lett. 2001, 28, 1215-1218.
https://doi.org/10.1029/2000GL012407

[11]. Gat, J. R.; Carmi, I. Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J. Geophys. Res. 1970, 75, 3039-3048.
https://doi.org/10.1029/JC075i015p03039

[12]. Criss, R. E. Principles of Stable Isotope Distribution; Oxford University Press: New York, NY, 1999.
https://doi.org/10.1093/oso/9780195117752.001.0001

[13]. Novel, J. P.; Dray, M.; Fehri, A.; Jusserand, C.; Nicoud, G.; Olive, P.; Puig, J. M.; Zuppi, G. M. Homogénéisation des signaux isotopiques, 18O et 3H, dans un système hydrologique de haute montagne: la Vallée d'Aoste (Italie). Rev. Sci. Eau/J. Water Sci. 2005, 12, 3-21.
https://doi.org/10.7202/705341ar

[14]. Baertschi, P. Absolute18O content of standard mean ocean water. Earth Planet. Sci. Lett. 1976, 31, 341-344.
https://doi.org/10.1016/0012-821X(76)90115-1

[15]. Smith, G. I.; Friedman, I.; Gleason, J. D.; Warden, A. Stable isotope composition of waters in southeastern California: 2. Groundwaters and their relation to modern precipitation. J. Geophys. Res. 1992, 97, 5813.
https://doi.org/10.1029/92JD00183

[16]. Gibson, J. J. A new conceptual model for predicting isotopic enrichment of lakes in seasonal climates. Pages (Bern) 2002, 10, 10-11.
https://doi.org/10.22498/pages.10.2.10

[17]. Cappa, C. D. Isotopic fractionation of water during evaporation. J. Geophys. Res. 2003, 108, 4525, D16.
https://doi.org/10.1029/2003JD003597

[18]. Petelet-Giraud, E.; Casanova, J.; Chery, L.; Negrel, P.; Bushaert, S. Essai de caractérisation isotopique (δ18O et δ2H) du signal metéorique actuel à partir des lacs et réservoirs: application au quart sud-ouest de la France. Houille Blanche 2005, 91, 57-62.
https://doi.org/10.1051/lhb:200502008

[19]. Ciais, P.; Jouzel, J. Deuterium and oxygen 18 in precipitation: Isotopic model, including mixed cloud processes. J. Geophys. Res. 1994, 99, 16793-16803.
https://doi.org/10.1029/94JD00412

[20]. Millet, A.; Bariac, T.; Grimaldi, C.; Boulègue, J. Signature isotopique et chimique des précipitations (pluies et pluviolessivats) en Guyane française. Rev. Sci. Eau/J. Water Sci. 2005, 12, 729-751.
https://doi.org/10.7202/705375ar

[21]. Clark, I. D.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC Press, 2013.
https://doi.org/10.1201/9781482242911

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).