European Journal of Chemistry

Modification and characterization of selected Zambian clays for potential use as photocatalysts

Crossmark


Main Article Content

Mary Mambwe
Kennedy Kabaso Kalebaila
Todd Johnson
John Moma

Abstract

Natural materials such as clay are valued for their favorable physical and chemical characteristics on the surface. In this study, the selected Zambian clay materials are immobilized with TiO2 and manganese ions to determine their suitability for use as photocatalysts. SiO2 and Al2O3 oxide composition of Zambian clays was obtained in the range of 35.08-52.63/35.15-52.72 and 13.85-21.73/13.77-21.80, respectively, by inductively coupled plasma (ICP) and X-ray fluorescence (XRF); while Energy dispersive spectroscopy (EDS) of modified clays showed that they have 1.54% incorporation of Ti and 4.98% Mn for Chingola clay to act as UV-Vis absorbers. According to the powder X-ray diffraction analysis of raw clays, the primary phase of all samples is quartz and contains low concentrations of bentonite and kaolinite. The scanning electron microscope (SEM) showed fluffy morphology with agglomeration, while the particle sizes of the clay photocatalysts with the use of transmission electron microscopy (TEM) ranged between 3.0 and 4.8 nm. UV-vis spectroscopy of the samples showed bandgap energies ranging from 2.52-3.08 eV. The surface areas, pore volumes, and pore sizes of the investigated modified and unmodified clays determined by the Brunauer, Teller, Emmett/Barrett Joyner Halenda (BET/BJH) model ranged from 12.06-64.51 m2/g, 0.029-0.068 cm3/g, and 0.642-2.802 nm, respectively. To enhance the mixing of oil and clay, the adsorbents were grafted with silane and confirmed by Fourier transform infrared (FTIR) spectroscopy through CH peaks at ~1450 and ~2860 cm-1. The modified clay materials exhibited favorable properties for use as photocatalysts.


icon graph This Abstract was viewed 507 times | icon graph Article PDF downloaded 267 times

How to Cite
(1)
Mambwe, M.; Kalebaila, K. K.; Johnson, T.; Moma, J. Modification and Characterization of Selected Zambian Clays for Potential Use As Photocatalysts. Eur. J. Chem. 2023, 14, 362-369.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Mudzielwana, R.; Gitari, M. W.; Ndungu, P. Uptake of As(V) from groundwater using Fe-Mn oxides modified kaolin clay: Physicochemical characterization and adsorption data modeling. Water (Basel) 2019, 11, 1245.
https://doi.org/10.3390/w11061245

[2]. Yasmina, M.; Mourad, K.; Mohammed, S. H.; Khaoula, C. Treatment heterogeneous photocatalysis; Factors influencing the photocatalytic degradation by TiO2. Energy Procedia 2014, 50, 559-566.
https://doi.org/10.1016/j.egypro.2014.06.068

[3]. Wongso, V.; Chen, C. J.; Razzaq, A.; Kamal, N. A.; Sambudi, N. S. Hybrid kaolin/TiO2 composite: Effect of urea addition towards an efficient photocatalyst for dye abatement under visible light irradiation. Appl. Clay Sci. 2019, 180, 105158.
https://doi.org/10.1016/j.clay.2019.105158

[4]. Hajjaji, W.; Ganiyu, S. O.; Tobaldi, D. M.; Andrejkovičová, S.; Pullar, R. C.; Rocha, F.; Labrincha, J. A. Natural Portuguese clayey materials and derived TiO2-containing composites used for decolouring methylene blue (MB) and orange II (OII) solutions. Appl. Clay Sci. 2013, 83-84, 91-98.
https://doi.org/10.1016/j.clay.2013.08.013

[5]. Mustapha, S.; Ndamitso, M. M.; Abdulkareem, A. S.; Tijani, J. O.; Shuaib, D. T.; Ajala, A. O.; Mohammed, A. K. Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review. Appl. Water Sci. 2020, 10, 49.
https://doi.org/10.1007/s13201-019-1138-y

[6]. Zhang, X.; Zhang, F.; Chan, K.-Y. Synthesis of titania-silica mixed oxide mesoporous materials, characterization and photocatalytic properties. Appl. Catal. A Gen. 2005, 284, 193-198.
https://doi.org/10.1016/j.apcata.2005.01.037

[7]. González, B.; Pérez, A.; Trujillano, R.; Gil, A.; Vicente, M. Microwave-assisted pillaring of a montmorillonite with Al-polycations in concentrated media. Materials (Basel) 2017, 10, 886.
https://doi.org/10.3390/ma10080886

[8]. Abeywardena, S. B. Y.; Perera, S.; Nalin de Silva, K. M.; Tissera, N. P. A facile method to modify bentonite nanoclay with silane. Int. Nano Lett. 2017, 7, 237-241.
https://doi.org/10.1007/s40089-017-0214-2

[9]. Schackow, A.; Correia, S. L.; Effting, C. Influence of microstructural and morphological properties of raw natural clays on the reactivity of clay brick wastes in a cementitious blend matrix. Ceramica 2020, 66, 154-163.
https://doi.org/10.1590/0366-69132020663782852

[10]. Correia, S. L.; Curto, K. A. S.; Hotza, D.; Segadães, A. M. Clays from southern Brazil: Physical, chemical and mineralogical characterization. Mater. Sci. For. 2005, 498-499, 447-452.
https://doi.org/10.4028/www.scientific.net/MSF.498-499.447

[11]. Buntin, A. E.; Sirotkin, O. S.; Sirotkin, R. O. Features of the chemical composition and structure of bentonites in Tatarstan. IOP Conf. Ser. Earth Environ. Sci. 2022, 990, 012041.
https://doi.org/10.1088/1755-1315/990/1/012041

[12]. Gates-Rector, S.; Blanton, T. The Powder Diffraction File: a quality materials characterization database. Powder Diffr. 2019, 34, 352-360.
https://doi.org/10.1017/S0885715619000812

[13]. Bel Hadjltaief, H.; Ben Ameur, S.; Da Costa, P.; Ben Zina, M.; Elena Galvez, M. Photocatalytic decolorization of cationic and anionic dyes over ZnO nanoparticle immobilized on natural Tunisian clay. Appl. Clay Sci. 2018, 152, 148-157.
https://doi.org/10.1016/j.clay.2017.11.008

[14]. Mudzielwana, R.; Gitari, M. W.; Akinyemi, S. A.; Msagati, T. A. M. Performance of Mn2+ modified bentonite clay for the removal of fluoride from aqueous solution. S. Afr. J. Chem. 2018, 71, 15-23.
https://doi.org/10.17159/0379-4350/2018/v71a2

[15]. Liu, J.; Zhang, G. Recent advances in synthesis and applications of clay-based photocatalysts: a review. Phys. Chem. Chem. Phys. 2014, 16, 8178-8192.
https://doi.org/10.1039/C3CP54146K

[16]. Nandiyanto, A. B. D.; Zaen, R.; Oktiani, R. Correlation between crystallite size and photocatalytic performance of micrometer-sized monoclinic WO3 particles. Arab. J. Chem. 2020, 13, 1283-1296.
https://doi.org/10.1016/j.arabjc.2017.10.010

[17]. Zaharia, A.; Perrin, F.-X.; Teodorescu, M.; Radu, A.-L.; Iordache, T.-V.; Florea, A.-M.; Donescu, D.; Sarbu, A. New organophilic kaolin clays based on single-point grafted 3-aminopropyl dimethylethoxysilane. Phys. Chem. Chem. Phys. 2015, 17, 24908-24916.
https://doi.org/10.1039/C5CP04395F

[18]. Moussa, R. S.; Mamane, O. S.; Habou, I.; Alma, M. M. M.; Natatou, I. Textural, mineralogical and physico-chemical characterization of red clay of Tanout (Zinder-Niger) with a view to its valorization in water treatment. GSC Adv. Res. Rev. 2022, 13, 039-053.
https://doi.org/10.30574/gscarr.2022.13.3.0339

[19]. Abràmoff, M. D.; Magalhães, P. J.; Ram, S. J. Image Processing with ImageJ. Biophotonics International 11, 36-42, https://imagescience.org/meijering/publications/download/bio2004.pdf.

[20]. Kumari, N.; Mohan, C. Basics of clay minerals and their characteristic properties. In Clay and Clay Minerals; IntechOpen, 2021, DOI: 10.5772/intechopen.97672.
https://doi.org/10.5772/intechopen.97672

[21]. Landi, S., Jr; Segundo, I. R.; Freitas, E.; Vasilevskiy, M.; Carneiro, J.; Tavares, C. J. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun. 2022, 341, 114573.
https://doi.org/10.1016/j.ssc.2021.114573

[22]. Lopes, J. S.; Rodriguesa, W. V.; Oliveira, V. V, Braga, A. N.; Silva, R. T.; França, A. A.;….Filho, E. C. Modification of kaolinite from Pará/Brazil region applied in the anionic dye. Appl. Clay Sci. 2019, 168, 295-303. https://doi.org/10.1016/j.clay.2018.11.028
https://doi.org/10.1016/j.clay.2018.11.028

[23]. Liang, H.; Wang, Z.; Liao, L.; Chen, L.; Li, Z.; Feng, J. High performance photocatalysts: Montmorillonite supported-nano TiO composites. Optik (Stuttg.) 2017, 136, 44-51.
https://doi.org/10.1016/j.ijleo.2017.02.018

[24]. Piscitelli, F.; Posocco, P.; Toth, R.; Fermeglia, M.; Pricl, S.; Mensitieri, G.; Lavorgna, M. Sodium montmorillonite silylation: Unexpected effect of the aminosilane chain length. J. Colloid Interface Sci. 2010, 351, 108-115.
https://doi.org/10.1016/j.jcis.2010.07.059

[25]. Eloussaief, M.; Benzina, M. Efficiency of natural and acid-activated clays in the removal of Pb(II) from aqueous solutions. J. Hazard. Mater. 2010, 178, 753-757.
https://doi.org/10.1016/j.jhazmat.2010.02.004

[26]. Danner, T.; Norden, G.; Justnes, H. Characterisation of calcined raw clays suitable as supplementary cementitious materials. Appl. Clay Sci. 2018, 162, 391-402.
https://doi.org/10.1016/j.clay.2018.06.030

[27]. Silva, A. A.; Dahmouche, K.; Soares, B. G. Nanostructure and dynamic mechanical properties of silane-functionalized montmorillonite/ epoxy nanocomposites. Appl. Clay Sci. 2011, 54, 151-158.
https://doi.org/10.1016/j.clay.2011.08.002

[28]. Setthaya, N.; Chindaprasirt, P.; Yin, S.; Pimraksa, K. TiO2-zeolite photocatalysts made of metakaolin and rice husk ash for removal of methylene blue dye. Powder Technol. 2017, 313, 417-426.
https://doi.org/10.1016/j.powtec.2017.01.014

Supporting Agencies

The Copperbelt University Africa Centre of Excellence for Sustainable Mining and the Ministry of Technology and Science, University of the Witwatersrand, Johannesburg, South Africa.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).