European Journal of Chemistry

Advancing circular economy in industrial chemistry and environmental engineering: Principles, alignment with United Nations sustainable development goals, and pathways to implementation

Crossmark


Main Article Content

Salaha Saeed
Muhammad Yousaf Arshad
Anam Suhail Ahmed

Abstract

This groundbreaking review explores the crucial role of the circular economy in industrial chemistry and environmental engineering. It surpasses a mere examination of principles and methods, delving into the profound significance and urgency of this transformative shift. By analyzing key elements such as resource efficiency, waste valorization, sustainable product design, industrial symbiosis, and policy integration, the study highlights the power of collaboration, technological advancements, and extensive literature research. It reveals the remarkable alignment between the circular economy and the Sustainable Development Goals (SDGs), emphasizing how circular practices promote resource efficiency, waste reduction, and sustainable production and consumption patterns, thus driving progress across multiple SDGs. With a specific focus on responsible consumption and production, clean energy, innovative industrial practices, climate action, ecosystem protection, water resource management, job creation, economic growth, sustainable urbanization, and collaboration, the review provides a comprehensive roadmap for adopting circularity. Its practical recommendations cover sustainable material selection, resource efficiency, closing loop, digitalization, and robust policy support. In addition, it emphasizes the paramount importance of collaboration, stakeholder engagement, education, capacity building, circular supply chain management, and effective policy frameworks in spearheading circular economy initiatives. Drawing inspiration from diverse circular economy models and compelling case studies in industrial chemistry, the study highlights the integration of environmental, social, and governance (ESG) factors, ensuring both sustainability and positive societal impact. This comprehensive review serves as a guiding light, demonstrating the immense potential of the circular economy in driving sustainable development. It offers actionable guidance for implementing circular practices, empowering professionals to make tangible contributions to a more sustainable future. Additionally, it serves as a foundational piece, fueling the advancement of knowledge, inspiring further research, and propelling remarkable progress in the ever-evolving fields of industrial chemistry and environmental engineering.


icon graph This Abstract was viewed 1055 times | icon graph Article PDF downloaded 398 times

How to Cite
(1)
Saeed, S.; Arshad, M. Y.; Ahmed, A. S. Advancing Circular Economy in Industrial Chemistry and Environmental Engineering: Principles, Alignment With United Nations Sustainable Development Goals, and Pathways to Implementation. Eur. J. Chem. 2023, 14, 414-428.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Geissdoerfer, M.; Savaget, P.; Bocken, N. M. P.; Hultink, E. J. The Circular Economy - A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757-768.
https://doi.org/10.1016/j.jclepro.2016.12.048

[2]. Patil, T.; Rebaioli, L.; Fassi, I. Cyber-physical systems for end-of-life management of printed circuit boards and mechatronics products in home automation: A review. Sustain. Mater. Technol. 2022, 32, e00422.
https://doi.org/10.1016/j.susmat.2022.e00422

[3]. Telenko, C.; O'Rourke, J. M.; Conner Seepersad, C.; Webber, M. E. A compilation of design for environment guidelines. J. Mech. Des. N. Y. 2016, 138, 031102.
https://doi.org/10.1115/1.4032095

[4]. Chertow, M. R. "Uncovering" industrial symbiosis. J. Ind. Ecol. 2008, 11, 11-30.
https://doi.org/10.1162/jiec.2007.1110

[5]. Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and practice; Oxford University Press: London, England, 1998.

[6]. Guinee, J. B. Handbook on life cycle assessment operational guide to the ISO standards. Int. J. Life Cycle Assess. 2002, 7.
https://doi.org/10.1007/BF02978897

[7]. Bonoli, A.; Zanni, S.; Serrano-Bernardo, F. Sustainability in building and construction within the framework of circular cities and European New Green Deal. The contribution of concrete recycling. Sustainability 2021, 13, 2139.
https://doi.org/10.3390/su13042139

[8]. AL-Oqla, F. M.; Hayajneh, M. T. A hierarchy weighting preferences model to optimise green composite characteristics for better sustainable bio-products. Int. J. Sustain. Eng. 2021, 14, 1043-1048.
https://doi.org/10.1080/19397038.2020.1822951

[9]. AL-Oqla, F. M.; Alaaeddin, M. H.; El-Shekeil, Y. A. Thermal stability and performance trends of sustainable lignocellulosic olive / low density polyethylene biocomposites for better environmental green materials. Eng. Solid Mech. 2021, 9, 439-448.
https://doi.org/10.5267/j.esm.2021.5.002

[10]. AL-Oqla, F. M.; Hayajneh, M. T.; Hoque, M. E. Structural integrity and performance investigations of a novel chemically treated cellulosic paper corn/polyester sustainable biocomposites. Funct. Compos. Struct. 2023, 5, 015007.
https://doi.org/10.1088/2631-6331/acbf20

[11]. AL-Oqla, F. M.; Omari, M. A.; Al-Ghraibah, A. Predicting the potential of biomass-based composites for sustainable automotive industry using a decision-making model. In Lignocellulosic Fibre and Biomass-Based Composite Materials; Elsevier, 2017; pp. 27-43.
https://doi.org/10.1016/B978-0-08-100959-8.00003-2

[12]. Samad, M. A.; Sinha, S. K. Mechanical, thermal and tribological characterization of a UHMWPE film reinforced with carbon nanotubes coated on steel. Tribol. Int. 2011, 44, 1932-1941.
https://doi.org/10.1016/j.triboint.2011.08.001

[13]. AL-Oqla, F. M.; Sapuan, S. M.; Ishak, M. R.; Nuraini, A. A. A model for evaluating and determining the most appropriate polymer matrix type for natural fiber composites. Int. J. Polym. Anal. Charact. 2015, 20, 191-205.
https://doi.org/10.1080/1023666X.2015.990184

[14]. Fares, O.; AL-Oqla, F.; Hayajneh, M. Revealing the intrinsic dielectric properties of mediterranean green fiber composites for sustainable functional products. J. Ind. Text. 2022, 51, 7732S-7754S.
https://doi.org/10.1177/15280837221094648

[15]. AL-Oqla, F. M.; Hayajneh, M. T.; Al-Shrida, M. M. Mechanical performance, thermal stability and morphological analysis of date palm fiber reinforced polypropylene composites toward functional bio-products. Cellulose 2022, 29, 3293-3309.
https://doi.org/10.1007/s10570-022-04498-6

[16]. AL-Oqla, F. M.; Hayajneh, M. T. Stress failure interface of cellulosic composite beam for more reliable industrial design. Int. J. Interact. Des. Manuf. (IJIDeM) 2022, 16, 1727-1738.
https://doi.org/10.1007/s12008-022-00884-3

[17]. Al-Jarrah, R.; AL-Oqla, F. M. A novel integrated BPNN/SNN artificial neural network for predicting the mechanical performance of green fibers for better composite manufacturing. Compos. Struct. 2022, 289, 115475.
https://doi.org/10.1016/j.compstruct.2022.115475

[18]. AL-Oqla, F. M. Biomaterial hierarchy selection framework under uncertainty for more reliable sustainable green products. JOM (1989) 2023, 75, 2187-2198.
https://doi.org/10.1007/s11837-023-05797-4

[19]. AL-Oqla, F. M.; Sapuan, S. M.; Ishak, M. R.; Nuraini, A. A. Predicting the potential of agro waste fibers for sustainable automotive industry using a decision making model. Comput. Electron. Agric. 2015, 113, 116-127.
https://doi.org/10.1016/j.compag.2015.01.011

[20]. AL-Oqla, F. M.; Sapuan, S. M. Morphological study and performance deterioration of sustainable lignocellulosic corn fiber bio-composites. J. Mater. Cycles Waste Manag. 2023, 25, 337-345.
https://doi.org/10.1007/s10163-022-01541-3

[21]. AL-Oqla, F. M.; Sapuan, S. M.; Ishak, M. R.; Nuraini, A. A. A novel evaluation tool for enhancing the selection of natural fibers for polymeric composites based on fiber moisture content criterion. Bioresources 2015, 10, 299-312.
https://doi.org/10.15376/biores.10.1.299-312

[22]. AL-Oqla, F. M.; Sapuan, S. M.; Ishak, M. R.; Nuraini, A. A. A decision-making model for selecting the most appropriate natural fiber - Polypropylene-based composites for automotive applications. J. Compos. Mater. 2016, 50, 543-556.
https://doi.org/10.1177/0021998315577233

[23]. AL-Oqla, F. M.; Sapuan, M. S.; Ishak, M. R.; Abdul Aziz, N. Combined multi-criteria evaluation stage technique as an Agro waste evaluation indicator for polymeric composites: Date palm fibers as a case study. Bioresources 2014, 9, 4608-4621.
https://doi.org/10.15376/biores.9.3.4608-4621

[24]. AL-Oqla, F. M.; Sapuan, S. M.; Jawaid, M. Integrated Mechanical-Economic-Environmental Quality of Performance for Natural Fibers for Polymeric-Based Composite Materials. Journal of Natural Fibers 2016, 13, 651-659.

[25]. Foundation, E. M. https://www.werktrends.nl/app/uploads/2015/ 06/Rapport_McKinsey-Towards_A_Circular_Economy.pdf (accessed January 20, 2023).

[26]. AL-Oqla, F. M. Manufacturing and delamination factor optimization of cellulosic paper/epoxy composites towards proper design for sustainability. Int. J. Interact. Des. Manuf. (IJIDeM) 2023, 17, 765-773.
https://doi.org/10.1007/s12008-022-00980-4

[27]. Willskytt, S. Design of consumables in a resource-efficient economy-A literature review. Sustainability 2021, 13, 1036.
https://doi.org/10.3390/su13031036

[28]. Hochschorner, E.; Finnveden, G. Evaluation of two simplified Life Cycle assessment methods. Int. J. Life Cycle Assess. 2003, 8, 119-128.
https://doi.org/10.1007/BF02978456

[29]. Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11-32.
https://doi.org/10.1016/j.jclepro.2015.09.007

[30]. Bocken, N. M. P.; de Pauw, I.; Bakker, C.; van der Grinten, B. Product design and business model strategies for a circular economy. J. Ind. Prod. Eng. 2016, 33, 308-320.
https://doi.org/10.1080/21681015.2016.1172124

[31]. Cucciniello, R.; Cespi, D. Recycling within the chemical industry: The circular economy era. Recycling 2018, 3, 22.
https://doi.org/10.3390/recycling3020022

[32]. Purchase, C. K.; Al Zulayq, D. M.; O'Brien, B. T.; Kowalewski, M. J.; Berenjian, A.; Tarighaleslami, A. H.; Seifan, M. Circular Economy of construction and demolition waste: A literature review on lessons, challenges, and benefits. Materials (Basel) 2021, 15, 76.
https://doi.org/10.3390/ma15010076

[33]. Liu, J.; Feng, Y.; Zhu, Q.; Sarkis, J. Green supply chain management and the circular economy: Reviewing theory for advancement of both fields. Int. J. Phys. Distrib. Logist. Manag. 2018, 48, 794-817.
https://doi.org/10.1108/IJPDLM-01-2017-0049

[34]. Geissdoerfer, M.; Morioka, S. N.; de Carvalho, M. M.; Evans, S. Business models and supply chains for the circular economy. J. Clean. Prod. 2018, 190, 712-721.
https://doi.org/10.1016/j.jclepro.2018.04.159

[35]. Geng, Y.; Doberstein, B. Developing the circular economy in China: Challenges and opportunities for achieving "leapfrog development." Int. J. Sustainable Dev. World Ecol. 2008, 15, 231-239.
https://doi.org/10.3843/SusDev.15.3:6

[36]. Tuladhar, A.; Iatridis, K.; Dimov, D. History and evolution of the circular economy and circular economy business models. In Circular Economy and Sustainability; Elsevier, 2022; pp. 87-106.
https://doi.org/10.1016/B978-0-12-819817-9.00031-4

[37]. Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221-232.
https://doi.org/10.1016/j.resconrec.2017.09.005

[38]. Sustainable solutions: Developing products and services for the future; Charter, M.; Tischner, U., Eds.; Routledge, 2017.

[39]. Bocken, N.; Ritala, P. Six ways to build circular business models. J. Bus. Strategy 2022, 43, 184-192.
https://doi.org/10.1108/JBS-11-2020-0258

[40]. Jonck, A. V.; Ribeiro, J. M. P.; Silva, S. A. da; Anhalt, T. C.; Guerra, J. B. S. O. de A. Circular Economy: a review. In Estado, sociedade e sustentabilidade: debates interdisciplinares X; Ed. Unisul, 2018; pp. 24-38.
https://doi.org/10.19177/978-85-8019-207-0.23-37

[41]. Pohlmann, L. D. Biomimicry-innovations inspired by nature by Janine M. benyus US-NY William morrow. [hardback 1997, paperback 2002] (ISBN: 0-688-10699-9). Insight 2016, 19, 78-78.
https://doi.org/10.1002/inst.12116

[42]. Chertow, M. R. Industrial symbiosis: Literature and taxonomy. Annu. Rev. Energy Environ. 2000, 25, 313-337.
https://doi.org/10.1146/annurev.energy.25.1.313

[43]. Herczeg, G.; Akkerman, R.; Hauschild, M. Z. Supply chain collaboration in industrial symbiosis networks. J. Clean. Prod. 2018, 171, 1058-1067.
https://doi.org/10.1016/j.jclepro.2017.10.046

[44]. Reim, W.; Parida, V.; Örtqvist, D. Product-Service Systems (PSS) business models and tactics - a systematic literature review. J. Clean. Prod. 2015, 97, 61-75.
https://doi.org/10.1016/j.jclepro.2014.07.003

[45]. Bocken, N.; Strupeit, L.; Whalen, K.; Nußholz, J. A review and evaluation of circular business model innovation tools. Sustainability 2019, 11, 2210.
https://doi.org/10.3390/su11082210

[46]. De Giovanni, P.; Esposito Vinzi, V. The benefits of a monitoring strategy for firms subject to the Emissions Trading System. Transp. Res. D Transp. Environ. 2014, 33, 220-233.
https://doi.org/10.1016/j.trd.2014.06.008

[47]. Anastas, P. T.; Beach, E. S. Green chemistry: the emergence of a transformative framework. Green Chem. Lett. Rev. 2007, 1, 9-24.
https://doi.org/10.1080/17518250701882441

[48]. Sheldon, R. A. Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem. 2014, 16, 950-963.
https://doi.org/10.1039/C3GC41935E

[49]. Polshettiwar, V.; Varma, R. S. Green chemistry by nano-catalysis. Green Chem. 2010, 12, 743-754.
https://doi.org/10.1039/b921171c

[50]. Gupta, M. N.; Kaloti, M.; Kapoor, M.; Solanki, K. Nanomaterials as matrices for enzyme immobilization. Artif. Cells Blood Substit. Immobil. Biotechnol. 2011, 39, 98-109.
https://doi.org/10.3109/10731199.2010.516259

[51]. Life cycle assessment handbook: A guide for environmentally sustainable products; Curran, M. A., Ed.; John Wiley & Sons: Nashville, TN, 2012.

[52]. Rodrigues, L. A.; Pereira, C. V.; Leonardo, I. C.; Fernández, N.; Gaspar, F. B.; Silva, J. M.; Reis, R. L.; Duarte, A. R. C.; Paiva, A.; Matias, A. A. Terpene-based natural deep eutectic systems as efficient solvents to recover astaxanthin from brown crab shell residues. ACS Sustain. Chem. Eng. 2020, 8, 2246-2259.
https://doi.org/10.1021/acssuschemeng.9b06283

[53]. Gupta, M. N.; Raghava, S. Relevance of chemistry to white biotechnology. Chem. Cent. J. 2007, 1.
https://doi.org/10.1186/1752-153X-1-17

[54]. Belgacem, M. N.; Gandini, A. Monomers, polymers and composites from renewable resources; Elsevier, 2011.

[55]. Anastas, P. T.; Heine, L. G.; Williamson, T. C. Green chemical syntheses and processes: Introduction. In ACS Symposium Series; American Chemical Society: Washington, DC, 2000; pp. 1-6.
https://doi.org/10.1021/bk-2000-0767.ch001

[56]. Luque, R.; Clark, J. Handbook of biofuels production: Processes and technologies; Elsevier, 2010.
https://doi.org/10.1533/9780857090492

[57]. Hussain, I.; Singh, N. B.; Singh, A.; Singh, H.; Singh, S. C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 2016, 38, 545-560.
https://doi.org/10.1007/s10529-015-2026-7

[58]. Bechtold, T.; Mussak, R. Handbook of Natural Colorants; John Wiley & Sons, 2009.
https://doi.org/10.1002/9780470744970

[59]. Sharma, V. K.; Jinadatha, C.; Lichtfouse, E. Environmental chemistry is most relevant to study coronavirus pandemics. Environ. Chem. Lett. 2020, 18, 993-996.
https://doi.org/10.1007/s10311-020-01017-6

[60]. Roschangar, F.; Colberg, J.; Dunn, P. J.; Gallou, F.; Hayler, J. D.; Koenig, S. G.; Kopach, M. E.; Leahy, D. K.; Mergelsberg, I.; Tucker, J. L.; Sheldon, R. A.; Senanayake, C. H. A deeper shade of green: inspiring sustainable drug manufacturing. Green Chem. 2017, 19, 281-285.
https://doi.org/10.1039/C6GC02901A

[61]. Pacheco-Torgal, F.; Tam, V.; Labrincha, J.; Ding, Y.; de Brito, J. Handbook of recycled concrete and demolition waste; Elsevier, 2013.
https://doi.org/10.1533/9780857096906

[62]. Fan, Z.; Zhang, L.; Baumann, D.; Mei, L.; Yao, Y.; Duan, X.; Shi, Y.; Huang, J.; Huang, Y.; Duan, X. In situ transmission electron microscopy for energy materials and devices. Adv. Mater. 2019, 31, 1900608.
https://doi.org/10.1002/adma.201900608

[63]. Fröhlich-Nowoisky, J.; Kampf, C. J.; Weber, B.; Huffman, J. A.; Pöhlker, C.; Andreae, M. O.; Lang-Yona, N.; Burrows, S. M.; Gunthe, S. S.; Elbert, W.; Su, H.; Hoor, P.; Thines, E.; Hoffmann, T.; Després, V. R.; Pöschl, U. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res. 2016, 182, 346-376.
https://doi.org/10.1016/j.atmosres.2016.07.018

[64]. Agapios, A.; Andreas, V.; Marinos, S.; Katerina, M.; Antonis, Z. A. Waste aroma profile in the framework of food waste management through household composting. J. Clean. Prod. 2020, 257, 120340.
https://doi.org/10.1016/j.jclepro.2020.120340

[65]. Chen, Y.-G.; He, Y.; Ye, W.-M.; Jia, L.-Y. Competitive adsorption characteristics of Na(I)/Cr(III) and Cu(II)/Cr(III) on GMZ bentonite in their binary solution. J. Ind. Eng. Chem. 2015, 26, 335-339.
https://doi.org/10.1016/j.jiec.2014.12.006

[66]. Mammola, S.; Meierhofer, M. B.; Borges, P. A. V.; Colado, R.; Culver, D. C.; Deharveng, L.; Delić, T.; Di Lorenzo, T.; Dražina, T.; Ferreira, R. L.; Fiasca, B.; Fišer, C.; Galassi, D. M. P.; Garzoli, L.; Gerovasileiou, V.; Griebler, C.; Halse, S.; Howarth, F. G.; Isaia, M.; Johnson, J. S.; Komerički, A.; Martínez, A.; Milano, F.; Moldovan, O. T.; Nanni, V.; Nicolosi, G.; Niemiller, M. L.; Pallarés, S.; Pavlek, M.; Piano, E.; Pipan, T.; Sanchez-Fernandez, D.; Santangeli, A.; Schmidt, S. I.; Wynne, J. J.; Zagmajster, M.; Zakšek, V.; Cardoso, P. Towards evidence‐based conservation of subterranean ecosystems. Biol. Rev. Camb. Philos. Soc. 2022, 97, 1476-1510.
https://doi.org/10.1111/brv.12851

[67]. Chang, F.; Zhang, X.; Zhan, G.; Duan, Y.; Zhang, S. Review of methods for sustainability assessment of chemical engineering processes. Ind. Eng. Chem. Res. 2021, 60, 52-66.
https://doi.org/10.1021/acs.iecr.0c04720

[68]. Jamwal, A.; Agrawal, R.; Sharma, M. A framework to overcome blockchain enabled sustainable manufacturing issues through circular economy and industry 4.0 measures. Int. J. Math. Eng. Manag. Sci. 2022, 7, 764-790.
https://doi.org/10.33889/IJMEMS.2022.7.6.050

[69]. United Nations Environment Programme; Andrews, E. S. Guidelines for Social Life Cycle Assessment of products: Social and Socio-economic LCA Guidelines complementing environmental LCA and life cycle costing, contributing to the full assessment of goods and services within the context of sustainable development; UNEP/Earthprint, 2009.

[70]. Schwanholz, J.; Leipold, S. Sharing for a circular economy? an analysis of digital sharing platforms' principles and business models. J. Clean. Prod. 2020, 269, 122327.
https://doi.org/10.1016/j.jclepro.2020.122327

[71]. Thoben, K.-D.; BIBA - Bremer Institut für Produktion und Logistik GmbH, the University of Bremen; Wiesner, S.; Wuest, T.; Faculty of Production Engineering, University of Bremen, Bremen, Germany; Industrial and Management Systems Engineering, "Industrie 4.0" and smart manufacturing - A review of research issues and application examples. Int. J. Autom. Technol. 2017, 11, 4-16.
https://doi.org/10.20965/ijat.2017.p0004

[72]. Danish, M. S. S. AI and expert insights for sustainable energy future. Energies 2023, 16, 3309.
https://doi.org/10.3390/en16083309

[73]. Schumacher, K. A.; Forster, A. L. Textiles in a circular economy: An assessment of the current landscape, challenges, and opportunities in the United States. Front. Sustain. 2022, 3, 146.
https://doi.org/10.3389/frsus.2022.1038323

[74]. Díaz-Sainz, G.; Alvarez-Guerra, M.; Irabien, A. Continuous electrochemical reduction of CO2 to formate: Comparative study of the influence of the electrode configuration with Sn and Bi-based electrocatalysts. Molecules 2020, 25, 4457.
https://doi.org/10.3390/molecules25194457

[75]. Vadgama, N.; Tasca, P. An analysis of blockchain adoption in supply chains between 2010 and 2020. Front. Blockchain 2021, 4, 610476.
https://doi.org/10.3389/fbloc.2021.610476

[76]. Ocelík, V.; Kolk, A.; Ciulli, F. Multinational enterprises, Industry 4.0 and sustainability: A multidisciplinary review and research agenda. J. Clean. Prod. 2023, 413, 137434.
https://doi.org/10.1016/j.jclepro.2023.137434

[77]. Raja, S. N.; Carr, D. B.; Cohen, M.; Finnerup, N. B.; Flor, H.; Gibson, S.; Keefe, F. J.; Mogil, J. S.; Ringkamp, M.; Sluka, K. A.; Song, X.-J.; Stevens, B.; Sullivan, M. D.; Tutelman, P. R.; Ushida, T.; Vader, K. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain 2020, 161, 1976-1982.
https://doi.org/10.1097/j.pain.0000000000001939

[78]. Na, H.-M.; Sun, J.; Qiu, Z.; Yuan, Y.; Du, T. Optimization of energy efficiency, energy consumption and co 2 emission in typical iron and steel manufacturing process. SSRN Electron. J. 2021.
https://doi.org/10.2139/ssrn.3954326

[79]. Mujahid Ghouri, A.; Mani, V.; Jiao, Z.; Venkatesh, V. G.; Shi, Y.; Kamble, S. S. An empirical study of real-time information-receiving using industry 4.0 technologies in downstream operations. Technol. Forecast. Soc. Change 2021, 165, 120551.
https://doi.org/10.1016/j.techfore.2020.120551

[80]. Gejo-García, J.; Reschke, J.; Gallego-García, S.; García-García, M. Development of a system dynamics simulation for assessing manufacturing systems based on the digital twin concept. Appl. Sci. (Basel) 2022, 12, 2095.
https://doi.org/10.3390/app12042095

[81]. Wang, W. Y. C.; Wang, Y. Analytics in the era of big data: The digital transformations and value creation in industrial marketing. Ind. Mark. Manag. 2020, 86, 12-15.
https://doi.org/10.1016/j.indmarman.2020.01.005

[82]. Nascimento, A. S.; Fagundes, C. V.; Mendes, F. A. dos S.; Leal, J. C. Effectiveness of virtual reality rehabilitation in persons with multiple sclerosis: A systematic review and meta-analysis of randomized controlled trials. Mult. Scler. Relat. Disord. 2021, 54, 103128.
https://doi.org/10.1016/j.msard.2021.103128

[83]. Mishra, K. N.; Chakraborty, C. A novel approach toward enhancing the quality of life in smart cities using clouds and IoT-based technologies. In Internet of Things; Springer International Publishing: Cham, 2020; pp. 19-35.
https://doi.org/10.1007/978-3-030-18732-3_2

[84]. Wedel, M.; Bigné, E.; Zhang, J. Virtual and augmented reality: Advancing research in consumer marketing. Int. J. Res. Mark. 2020, 37, 443-465.
https://doi.org/10.1016/j.ijresmar.2020.04.004

[85]. Borhade, A. P.; Patil, A. N.; Patil, S. K. Automatic wall painting robot automatic wall painting robot 2019.

[86]. Tao, Z.; Ahn, H.-J.; Lian, C.; Lee, K.-H.; Lee, C.-H. Design and optimization of prosthetic foot by using polylactic acid 3D printing. J. Mech. Sci. Technol. 2017, 31, 2393-2398.
https://doi.org/10.1007/s12206-017-0436-2

[87]. Conca, K. An unfinished foundation: The united nations and global environmental governance; Oxford University Press, 2015.
https://doi.org/10.1093/acprof:oso/9780190232856.001.0001

[88]. Belmonte-Ureña, L. J.; Plaza-Úbeda, J. A.; Vazquez-Brust, D.; Yakovleva, N. Circular economy, degrowth and green growth as pathways for research on sustainable development goals: A global analysis and future agenda. Ecol. Econ. 2021, 185, 107050.
https://doi.org/10.1016/j.ecolecon.2021.107050

[89]. Tanveer, M.; Khan, S. A. R.; Umar, M.; Yu, Z.; Sajid, M. J.; Haq, I. U. Waste management and green technology: future trends in circular economy leading towards environmental sustainability. Environ. Sci. Pollut. Res. Int. 2022, 29, 80161-80178.
https://doi.org/10.1007/s11356-022-23238-8

[90]. World Water Assessment Programme (United Nations) Water for a sustainable world: The United Nations World Water Development Report 2015; UNESCO, 2015.

[91]. Rahimi, A.; Yazdanian, N.; Mirarab Baygi, S. A.; Arya, K. Identifying and analyzing the importance-performance of factors affecting the development of green financing based on the role of the banking industry in Iran for the transition to a circular economy. International Journal of Finance & Managerial Accounting 2023, 8, 187-202.

[92]. Heras-Saizarbitoria, I.; Boiral, O.; Testa, F. Circular economy at the company level: An empirical study based on sustainability reports. Sustain. Dev. 2023, https://doi.org/10.1002/sd.2507
https://doi.org/10.1002/sd.2507

[93]. Eya, A. M.; Sinniah, G. K.; Junaidu, A. M.; Zubairu, M. Comparing environmental management and cities sustainability as a basis for sustainable development in Nigeria. Plan. Malays. J. 2022, 20.
https://doi.org/10.21837/pm.v20i21.1119

[94]. Mainardis, M.; Cecconet, D.; Moretti, A.; Callegari, A.; Goi, D.; Freguia, S.; Capodaglio, A. G. Wastewater fertigation in agriculture: Issues and opportunities for improved water management and circular economy. Environ. Pollut. 2022, 296, 118755.
https://doi.org/10.1016/j.envpol.2021.118755

[95]. Weiland, S.; Hickmann, T.; Lederer, M.; Marquardt, J.; Schwindenhammer, S. The 2030 agenda for sustainable development: Transformative change through the Sustainable Development Goals? Polit. Gov. 2021, 9, 90-95.
https://doi.org/10.17645/pag.v9i1.4191

[96]. Lee, B. X.; Kjaerulf, F.; Turner, S.; Cohen, L.; Donnelly, P. D.; Muggah, R.; Davis, R.; Realini, A.; Kieselbach, B.; MacGregor, L. S.; Waller, I.; Gordon, R.; Moloney-Kitts, M.; Lee, G.; Gilligan, J. Transforming our world: Implementing the 2030 agenda through sustainable development goal indicators. J. Public Health Policy 2016, 37, 13-31.
https://doi.org/10.1057/s41271-016-0002-7

[97]. Dumée, L. F. Circular materials and circular design-review on challenges towards sustainable manufacturing and recycling. Circ. Econ. Sustain. 2022, 2, 9-23.
https://doi.org/10.1007/s43615-021-00085-2

[98]. Pomykała, R.; Tora, B. Circular economy in mineral processing. E3S Web Conf. 2017, 18, 01024.
https://doi.org/10.1051/e3sconf/20171801024

[99]. Lahane, S.; Kant, R.; Shankar, R. Circular supply chain management: A state-of-art review and future opportunities. J. Clean. Prod. 2020, 258, 120859.
https://doi.org/10.1016/j.jclepro.2020.120859

[100]. Smol, M.; Marcinek, P.; Duda, J.; Szołdrowska, D. Importance of sustainable mineral resource management in implementing the circular economy (CE) model and the European Green Deal strategy. Resources 2020, 9, 55.
https://doi.org/10.3390/resources9050055

[101]. Castillo-Díaz, F. J.; Belmonte-Ureña, L. J.; Camacho-Ferre, F.; Tello-Marquina, J. C. The management of agriculture plastic waste in the framework of circular economy. Case of the Almeria greenhouse (Spain). Int. J. Environ. Res. Public Health 2021, 18, 12042.
https://doi.org/10.3390/ijerph182212042

[102]. Geissdoerfer, M.; Vladimirova, D.; Evans, S. Sustainable business model innovation: A review. J. Clean. Prod. 2018, 198, 401-416.
https://doi.org/10.1016/j.jclepro.2018.06.240

[103]. Marrucci, L.; Daddi, T.; Iraldo, F. The integration of circular economy with sustainable consumption and production tools: Systematic review and future research agenda. J. Clean. Prod. 2019, 240, 118268.
https://doi.org/10.1016/j.jclepro.2019.118268

[104]. Lozano, R.; Lozano, F. J.; Mulder, K.; Huisingh, D.; Waas, T. Advancing Higher Education for Sustainable Development: international insights and critical reflections. J. Clean. Prod. 2013, 48, 3-9.
https://doi.org/10.1016/j.jclepro.2013.03.034

[105]. Kofos, A.; Ubacht, J.; Rukanova, B.; Korevaar, G.; Kouwenhoven, N.; Tan, Y.-H. Circular economy visibility evaluation framework. Journal of Responsible Technology 2022, 10, 100026.
https://doi.org/10.1016/j.jrt.2022.100026

[106]. Singh, S.; Babbitt, C.; Gaustad, G.; Eckelman, M. J.; Gregory, J.; Ryen, E.; Mathur, N.; Stevens, M. C.; Parvatker, A.; Buch, R.; Marseille, A.; Seager, T. Thematic exploration of sectoral and cross-cutting challenges to circular economy implementation. Clean Technol. Environ. Policy 2021, 23, 915-936.
https://doi.org/10.1007/s10098-020-02016-5

[107]. Desha, C.; Hargroves, K. A peaking and tailing approach to education and curriculum renewal for sustainable development. Sustainability 2014, 6, 4181-4199.
https://doi.org/10.3390/su6074181

[108]. Velasco-Muñoz, J. F.; Mendoza, J. M. F.; Aznar-Sánchez, J. A.; Gallego-Schmid, A. Circular economy implementation in the agricultural sector: Definition, strategies and indicators. Resour. Conserv. Recycl. 2021, 170, 105618.
https://doi.org/10.1016/j.resconrec.2021.105618

[109]. Saleem, F.; Abbas, A.; Rehman, A.; Khoja, A. H.; Naqvi, S. R.; Arshad, M. Y.; Zhang, K.; Harvey, A. Decomposition of benzene as a biomass gasification tar in CH4 carrier gas using non-thermal plasma: Parametric and kinetic study. J. Energy Inst. 2022, 102, 190-195.
https://doi.org/10.1016/j.joei.2022.03.009

[110]. Klancko, R. J. A Handbook of Industrial Ecology. Robert U. Ayres and Leslie W. Ayres, eds. 2002. Edward Elgar Publishing, Northampton, MA. 680 pp. $285 hardcover. Environ. Pract. 2003, 5, 183-184.
https://doi.org/10.1017/S1466046603261123

[111]. Rojanakit, P.; Torres de Oliveira, R.; Dulleck, U. The sharing economy: A critical review and research agenda. J. Bus. Res. 2022, 139, 1317-1334.
https://doi.org/10.1016/j.jbusres.2021.10.045

[112]. Arshad, M. Y.; Rashid, A.; Mahmood, F.; Saeed, S.; Ahmed, A. S. Metal(II) triazole complexes: Synthesis, biological evaluation, and analytical characterization using machine learning-based validation. Eur. J. Chem. 2023, 14, 155-164.
https://doi.org/10.5155/eurjchem.14.1.155-164.2396

[113]. Lestari, D. Biomimicry learning as inspiration for Product Design innovation in industrial revolution 4.0. Int. J. Creat. Arts Stud. 2020, 7, 1-18.
https://doi.org/10.24821/ijcas.v7i1.4160

[114]. Padró, J.-C.; Cardozo, J.; Montero, P.; Ruiz-Carulla, R.; Alcañiz, J. M.; Serra, D.; Carabassa, V. Drone-based identification of erosive processes in open-pit mining restored areas. Land (Basel) 2022, 11, 212.
https://doi.org/10.3390/land11020212

[115]. Gul, H.; Arshad, M. Y.; Tahir, M. W., Production of H2 via sorption enhanced auto-thermal reforming for small scale Applications-A process modeling and machine learning study. Intern. J. Hydrogen Energy 2023, 48 (34), 12622-12635. https://doi.org/10.1016/ j.ijhydene.2022.12.217
https://doi.org/10.1016/j.ijhydene.2022.12.217

[116]. Abreu, M. C. S. de; Ceglia, D. On the implementation of a circular economy: The role of institutional capacity-building through industrial symbiosis. Resour. Conserv. Recycl. 2018, 138, 99-109.
https://doi.org/10.1016/j.resconrec.2018.07.001

[117]. Saeed, M. A.; Niedzwiecki, L.; Arshad, M. Y.; Skrinsky, J.; Andrews, G. E.; Phylaktou, H. N. Combustion and explosion characteristics of pulverised wood, valorized with mild pyrolysis in pilot scale installation, using the modified ISO 1 m3 dust explosion vessel. Appl. Sci. (Basel) 2022, 12, 12928.
https://doi.org/10.3390/app122412928

[118]. Rafique, M. A.; Kiran, S.; Ashraf, A.; Mukhtar, N.; Rizwan, S.; Ashraf, M.; Arshad, M. Y. Effective removal of Direct Orange 26 dye using copper nanoparticles synthesized from Tilapia fish scales. Glob. NEST J. 2022, 24, 311-317.

[119]. Peterson, M. Cradle to cradle: Remaking the way we make things. J. Macromarketing 2004, 24, 78-79.
https://doi.org/10.1177/0276146704264148

[120]. Arshad, Y. M.; Rashid, A.; Gul, H.; Ahmad, A. S.; Jabbar, F. Optimization of acid-assisted extraction of pectin from banana (Musa Acuminata) peels by central composite design. Glob. NEST J. 2022, 24, 752-756.

[121]. Sultana, S.; Zulkifli, N.; Zainal, D. Environmental, social and governance (ESG) and investment decision in Bangladesh. Sustainability 2018, 10, 1831.
https://doi.org/10.3390/su10061831

[122]. Arshad, M. Y.; Azam, M. Environmental friendly specialty chemical plants for developing world. In A roadmap for economic development and sustainability with waste reduction; Imran, S., Ed.; 2021; pp. 293, https://conferences.uet.edu.pk/icewe/2021/final-proceedings/.

[123]. Rafique, M. A.; Kiran, S.; Jamal, A.; Anjum, M. N.; Jalal, F.; Munir, B.; Hafiz, I.; Noureen, F.; Ajmal, S.; Ahmad, W.; Arshad, M. Y. Green synthesis of copper nanoparticles using Allium cepa (onion) peels for removal of Disperse Yellow 3 dye. Desalin. Water Treat. 2022, 272, 259-265.
https://doi.org/10.5004/dwt.2022.28820

[124]. Stahel, W. R. The circular economy. Nature 2016, 531, 435-438.
https://doi.org/10.1038/531435a

[125]. Saleem, F.; Abbas, A.; Rehman, A.; Khoja, A. H.; Naqvi, S. R.; Arshad, M. Y.; Zhang, K.; Harvey, A. Decomposition of benzene as a biomass gasification tar in CH4 carrier gas using non-thermal plasma: Parametric and kinetic study. J. Energy Inst. 2022, 102, 190-195.
https://doi.org/10.1016/j.joei.2022.03.009

[126]. Arshad, M. Y. Integrating circular economy, SBTI, digital LCA, and ESG benchmarks for sustainable textile dyeing: A critical review of industrial textile practices. Glob. NEST J. 2023, https://doi.org/10.30955/gnj.005145.

Supporting Agencies

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).