European Journal of Chemistry

Exploring the influence of ionic liquids on bimetallic gold nanoclusters and cellobiose through DFT analysis


Main Article Content

Manohar Pillegowda
Susheela Krishnappa Lenkennavar
Ganga Periyasamy


We conducted density functional theory (DFT) studies to investigate the potential cleavage of cellobiose into smaller fragments in an ecofriendly manner using bimetallic nanoclusters in an ionic liquid (IL) medium. The presence of IL solvent layers notably influences the behavior of gold clusters during the binding. Our study involves the simultaneous consideration of metal clusters and ILs to compute cellobiose structures. Our computational analysis reveals weak interactions between IL and cellobiose, whereas metal clusters exhibit robust binding to cellobiose via glycosidic oxygen. Introducing heterogeneity in metal clusters enhances their binding to cellobiose. Incorporation of hetero-metals induces polarization in the clusters, leading to dipole formation, as indicated by the electrostatic potential maps of halogenated clusters. Among the investigated clusters, those containing [Au3Br(6IL)] exhibit notably strong binding to cellobiose, weakening the glycosidic bond by up to 7%. However, despite the strong interaction with metal clusters in an IL solvent, cleavage of the glycosidic bond remains elusive.

icon graph This Abstract was viewed 83 times | icon graph Article PDF downloaded 28 times

How to Cite
Pillegowda, M.; Lenkennavar, S. K.; Periyasamy, G. Exploring the Influence of Ionic Liquids on Bimetallic Gold Nanoclusters and Cellobiose through DFT Analysis. Eur. J. Chem. 2024, 15, 93-100.

Article Details

Crossref - Scopus - Google - European PMC

[1]. Limayem, A.; Ricke, S. C. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 2012, 38, 449-467.

[2]. Climent, M. J.; Corma, A.; Iborra, S. Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chem. 2011, 13, 520.

[3]. Mandels, M.; Reese, E. T. Induction of cellulase in fungi by cellobiose. J. Bacteriol. 1960, 79, 816-826.

[4]. Conley, K.; Godbout, L.; Whitehead, M. A. (tony); van de Ven, T. G. M. Origin of the twist of cellulosic materials. Carbohydr. Polym. 2016, 135, 285-299.

[5]. Takagaki, A.; Nishimura, S.; Ebitani, K. Catalytic transformations of biomass-derived materials into value-added chemicals. Catal. Surv. Asia 2012, 16, 164-182.

[6]. Huber, G. W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044-4098.

[7]. Henriksson, G.; Salumets, A.; Divne, C.; Pettersson, G. Studies of cellulose binding by cellobiose dehydrogenase and a comparison with cellobiohydrolase 1. Biochem. J. 1997, 324, 833-838.

[8]. Toshima, N.; Yonezawa, T. Bimetallic nanoparticles-novel materials for chemical and physical applications. New J Chem 1998, 22, 1179-1201.

[9]. Binder, J. B.; Raines, R. T. Fermentable sugars by chemical hydrolysis of biomass. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 4516-4521.

[10]. Wang, A.; Zhang, T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc. Chem. Res. 2013, 46, 1377-1386.

[11]. Kaufman Rechulski, M. D.; Käldström, M.; Richter, U.; Schüth, F.; Rinaldi, R. Mechanocatalytic depolymerization of lignocellulose performed on hectogram and kilogram scales. Ind. Eng. Chem. Res. 2015, 54, 4581-4592.

[12]. Qian, X.; Nimlos, M. R.; Davis, M.; Johnson, D. K.; Himmel, M. E. Ab initio molecular dynamics simulations of β-d-glucose and β-d-xylose degradation mechanisms in acidic aqueous solution. Carbohydr. Res. 2005, 340, 2319-2327.

[13]. Zhang, Y.; Cui, X.; Shi, F.; Deng, Y. Nano-gold catalysis in fine chemical synthesis. Chem. Rev. 2012, 112, 2467-2505.

[14]. An, D.; Ye, A.; Deng, W.; Zhang, Q.; Wang, Y. Selective conversion of cellobiose and cellulose into gluconic acid in water in the presence of oxygen, catalyzed by polyoxometalate‐supported gold nanoparticles. Chemistry 2012, 18, 2938-2947.

[15]. Sarkar, N.; Ghosh, S. K.; Bannerjee, S.; Aikat, K. Bioethanol production from agricultural wastes: An overview. Renew. Energy 2012, 37, 19-27.

[16]. Nigam, P. S.; Singh, A. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 2011, 37, 52-68.

[17]. Zhang, Q.; Zhang, S.; Deng, Y. Recent advances in ionic liquid catalysis. Green Chem. 2011, 13, 2619.

[18]. Wang, A.-Q.; Chang, C.-M.; Mou, C.-Y. Evolution of catalytic activity of Au−Ag bimetallic nanoparticles on mesoporous support for CO oxidation. J. Phys. Chem. B 2005, 109, 18860-18867.

[19]. Baishya, S.; Deka, R. C. Catalytic Activities of Au6, , and Clusters for CO oxidation: A density functional study. Int. J. Quantum Chem. 2014, 114, 1559-1566.

[20]. Yan, N.; Zhao, C.; Luo, C.; Dyson, P. J.; Liu, H.; Kou, Y. One-step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst. J. Am. Chem. Soc. 2006, 128, 8714-8715.

[21]. Hayashi, N.; Sakai, Y.; Tsunoyama, H.; Nakajima, A. Development of ultrafine multichannel microfluidic mixer for synthesis of bimetallic nanoclusters: Catalytic application of highly monodisperse AuPd nanoclusters stabilized by poly(N-vinylpyrrolidone). Langmuir 2014, 30, 10539-10547.

[22]. Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071-2084.

[23]. Gao, M.-R.; Yuan, J.; Antonietti, M. Frontispiece: Ionic liquids and poly(ionic liquid)s for morphosynthesis of inorganic materials. Chemistry 2017, 23.

[24]. Feng, J.-J.; Lin, X.-X.; Chen, L.-X.; Liu, M.-T.; Yuan, J.; Wang, A.-J. Ionic liquid-assisted synthesis of composition-tunable cross-linked AgPt aerogels with enhanced electrocatalysis. J. Colloid Interface Sci. 2017, 498, 22-30.

[25]. Itoh, H.; Naka, K.; Chujo, Y. Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J. Am. Chem. Soc. 2004, 126, 3026-3027.

[26]. Kudo, S.; Zhou, Z.; Yamasaki, K.; Norinaga, K.; Hayashi, J.-I. Sulfonate ionic liquid as a stable and active catalyst for levoglucosenone production from saccharides via catalytic pyrolysis. Catalysts 2013, 3, 757-773.

[27]. Jameel, U.; Zhu, M.; Chen, X.; Tong, Z. Recent progress of synthesis and applications in polyoxometalate and nanogold hybrid materials. J. Mater. Sci. 2016, 51, 2181-2198.

[28]. Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 2008, 37, 2096.

[29]. Tokonami, S.; Morita, N.; Takasaki, K.; Toshima, N. Novel synthesis, structure, and oxidation catalysis of Ag/Au bimetallic nanoparticles. J. Phys. Chem. C Nanomater. Interfaces 2010, 114, 10336-10341.

[30]. Pei, Y.; Tang, J.; Tang, X.; Huang, Y.; Zeng, X. C. New structure model of Au22(SR)18: Bitetrahederon golden kernel enclosed by [Au6(SR)6] Au(I) complex. J. Phys. Chem. Lett. 2015, 6, 1390-1395.

[31]. Yanai, T.; Tew, D. P.; Handy, N. C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51-57.

[32]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 09 Revision E.01, Gaussian, Inc., Wallingford CT, 2004.

[33]. Tlahuice-Flores, A.; Whetten, R. L.; Jose-Yacaman, M. Vibrational normal modes of small thiolate-protected gold clusters. J. Phys. Chem. C Nanomater. Interfaces 2013, 117, 12191-12198.

[34]. Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553-566.

[35]. Gázquez, J. L.; Cedillo, A.; Vela, A. Electrodonating and electroaccepting powers. J. Phys. Chem. A 2007, 111, 1966-1970.

[36]. Martínez, A.; Rodríguez-Gironés, M. A.; Barbosa, A.; Costas, M. Donator acceptor map for carotenoids, melatonin and vitamins. J. Phys. Chem. A 2008, 112, 9037-9042.

[37]. Martínez, A. Gold-bismuth clusters. J. Phys. Chem. A 2014, 118, 5894-5902.

[38]. Pillegowda, M.; Periyasamy, G. DFT studies on interaction between bimetallic [Au 2 M] clusters and cellobiose. Comput. Theor. Chem. 2018, 1129, 26-36.

[39]. Su, J.; Qiu, M.; Shen, F.; Qi, X. Efficient hydrolysis of cellulose to glucose in water by agricultural residue-derived solid acid catalyst. Cellulose 2018, 25, 17-22.

[40]. Payal, R. S.; Bharath, R.; Periyasamy, G.; Balasubramanian, S. Density functional theory investigations on the structure and dissolution mechanisms for cellobiose and Xylan in an ionic liquid: Gas phase and cluster calculations. J. Phys. Chem. B 2012, 116, 833-840.

Supporting Agencies

The University Grant Commission Faculty Recharge Program/(UGC-FRP(2013) Basic Scientific Research for funding and Vision group on science and technologies (VGST-KFIST-L2/GRD-1021/118/2022-23/94).
Most read articles by the same author(s)

Dimensions - Altmetric - scite_ - PlumX

Downloads and views


Download data is not yet available.


Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms


Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).