European Journal of Chemistry

Synthesis, crystal structure, and spectroscopic characterization of a new non-centrosymmetric compound, 1-(2-chloroquinolin-3-yl)-N-(4-fluorobenzyl)methanimine

Crossmark


Main Article Content

Maha Hachicha
Rawia Nasri
Mohamed Faouzi Zid
Hedi Mrabet

Abstract

In this work, we report the synthesis and characterization of a new condensed aromatic heterocycle (1-(2-chloroquinolin-3-yl)-N-(4-fluorobenzyl)methanimine) useful in various fields, mainly in medicinal and therapeutic chemistry, with interesting biological properties. Characterization of the title compound was carried out by 1H, 13C, 19F nuclear magnetic resonance and X-ray diffraction techniques. The crystal structure reveals that title compound crystallizes in the monoclinic system and crystal data for C17H12ClFN2: monoclinic, space group P21 (no. 4), a = 7.2253(10) Å, b = 5.7720(10) Å, c = 17.105(2) Å, β = 95.338(10)°, = 710.26(18) Å3, Z = 2, T = 298(2) K, μ(MoKα) = 0.274 mm-1, Dcalc = 1.397 g/cm3, 5010 reflections measured (4.784° ≤ 2Θ ≤ 54.324°), 3160 unique (Rint = 0.0501, Rsigma = 0.0506) which were used in all calculations. The final R1 was 0.0339 (I > 2σ(I)) and wR2 was 0.0907 (all data). The obtained molecular structure has an antiparallel arrangement of the molecular unit leading to a one-dimensional framework.


icon graph This Abstract was viewed 436 times | icon graph Article PDF downloaded 268 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Hachicha, M.; Nasri, R.; Zid, M. F.; Mrabet, H. Synthesis, Crystal Structure, and Spectroscopic Characterization of a New Non-Centrosymmetric Compound, 1-(2-Chloroquinolin-3-Yl)-N-(4-fluorobenzyl)methanimine. Eur. J. Chem. 2024, 15, 25-30.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Hernández-Ayala, L. F.; Guzmán-López, E. G.; Galano, A. Quinoline derivatives: Promising antioxidants with neuroprotective potential. Antioxidants (Basel) 2023, 12, 1853.
https://doi.org/10.3390/antiox12101853

[2]. Kucharski, D. J.; Jaszczak, M. K.; Boratyński, P. J. A review of modifications of quinoline antimalarials: Mefloquine and (hydroxy)chloroquine. Molecules 2022, 27, 1003.
https://doi.org/10.3390/molecules27031003

[3]. Loiseau, P. M.; Balaraman, K.; Barratt, G.; Pomel, S.; Durand, R.; Frézard, F.; Figadère, B. The potential of 2-substituted quinolines as antileishmanial drug candidates. Molecules 2022, 27, 2313.
https://doi.org/10.3390/molecules27072313

[4]. Zeleke, D.; Eswaramoorthy, R.; Belay, Z.; Melaku, Y. Synthesis and antibacterial, antioxidant, and molecular docking analysis of some novel quinoline derivatives. J. Chem. 2020, 2020, 1-16.
https://doi.org/10.1155/2020/1324096

[5]. Abdelbaset, M. S.; Abdel-Aziz, M.; Abuo-Rahma, G. E.-D. A.; Abdelrahman, M. H.; Ramadan, M.; Youssif, B. G. M. Novel quinoline derivatives carrying nitrones/oximes nitric oxide donors: Design, synthesis, antiproliferative and caspase-3 activation activities. Arch. Pharm. (Weinheim) 2018, 352, 1800270.
https://doi.org/10.1002/ardp.201800270

[6]. Chauhan, M. S. S.; Umar, T.; Aulakh, M. K. Quinolines: Privileged scaffolds for developing new anti‐neurodegenerative agents. ChemistrySelect 2023, 8 (14), e202204960.
https://doi.org/10.1002/slct.202204960

[7]. Rani, A.; Sharma, A.; Legac, J.; Rosenthal, P. J.; Singh, P.; Kumar, V. A trio of quinoline-isoniazid-phthalimide with promising antiplasmodial potential: Synthesis, in-vitro evaluation and heme-polymerization inhibition studies. Bioorg. Med. Chem. 2021, 39, 116159.
https://doi.org/10.1016/j.bmc.2021.116159

[8]. Gentile, D.; Fuochi, V.; Rescifina, A.; Furneri, P. M. New anti SARS-CoV-2 targets for quinoline derivatives chloroquine and hydroxychloroquine. Int. J. Mol. Sci. 2020, 21, 5856.
https://doi.org/10.3390/ijms21165856

[9]. Aygün, B.; Alaylar, B.; Turhan, K.; Şakar, E.; Karadayı, M.; Al-Sayyed, M. I. A.; Pelit, E.; Güllüce, M.; Karabulut, A.; Turgut, Z.; Alım, B. Investigation of neutron and gamma radiation protective characteristics of synthesized quinoline derivatives. Int. J. Radiat. Biol. 2020, 96, 1423-1434.
https://doi.org/10.1080/09553002.2020.1811421

[10]. Almansour, A. I.; Arumugam, N.; Prasad, S.; Kumar, R. S.; Alsalhi, M. S.; Alkaltham, M. F.; Al-Tamimi, H. B. A. Investigation of the optical properties of a novel class of quinoline derivatives and their random laser properties using ZnO nanoparticles. Molecules 2021, 27, 145.
https://doi.org/10.3390/molecules27010145

[11]. Harms, K.; Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

[12]. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849-854.
https://doi.org/10.1107/S0021889812029111

[13]. Sheldrick, G. M. A short history ofSHELX. Acta Crystallogr. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[14]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[15]. North, A. C. T.; Phillips, D. C.; Mathews, F. S. A semi-empirical method of absorption correction. Acta Crystallogr. A 1968, 24, 351-359.
https://doi.org/10.1107/S0567739468000707

[16]. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

[17]. Zhang, C. L.; Qian, J. L.; Zhou, T.; Li, Y. Q. Construction of a cobalt coordination polymer based on a linear ligand with flexible branched chains. J. Struct. Chem. 2021, 62, 918-927.
https://doi.org/10.1134/S0022476621060111

[18]. Gautam, A.; Shahini, C. R.; Siddappa, A. P.; Jan Grzegorz, M.; Hemavathi, B.; Ahipa, T. N.; Srinivasa, B. Palladium(II) complexes of coumarin substituted 1,2,4-triazol-5-ylidenes for catalytic C-C cross-coupling and C-H activation reactions. J. Organomet. Chem. 2021, 934, 121540.
https://doi.org/10.1016/j.jorganchem.2020.121540

[19]. Seck, T. M.; Faye, F. D.; Gaye, A. A.; Thiam, I. E.; Diouf, O.; Gaye, M.; Retailleau, P. Synthesis of mono and bis-substituted asymmetrical compounds, (1-(pyridin-2-yl)ethylidene)carbonohydrazide and 1-(2'-hydroxybenzylidene)-5-(1'-pyridylethylidene)carbonohydrazone: Structural characterization and antioxidant activity study. Eur. J. Chem. 2020, 11, 285-290.
https://doi.org/10.5155/eurjchem.11.4.285-290.2023

[20]. Diyali, N.; Chettri, M.; De, A.; Biswas, B. Synthesis, crystal structure, and antidiabetic property of hydrazine functionalized Schiff base: 1,2-Di(benzylidene)hydrazine. Eur. J. Chem. 2022, 13, 234-240.
https://doi.org/10.5155/eurjchem.13.2.234-240.2265

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).