European Journal of Chemistry

Comparative study of 4-((4-aminophenyl)diazenyl)-2-((2-phenylhydrazono)methyl)phenol and N-(4-((4-hydroxy-3-((2-phenylhydrazono)methyl)phenyl)diazenyl)phenyl)acetamide - DFT method

Crossmark


Main Article Content

Richard Rajkumar Siluvairaj
Vallal Perumal Govindasamy
Rajarajan Govindasamy
Periyanayagasamy Vanathu Chinnappan
Thanikachalam Venugopal

Abstract

Theoretical calculation of 4-((4-aminophenyl)diazenyl)-2-((2-phenylhydrazono)methyl) phenol (1) and N-(4-((4-hydroxy-3-((2-phenylhydrazono)methyl)phenyl)diazenyl)phenyl) acetamide (2) was studied by DFT/B3LYP/6-311+G(d,p) basis set. The calculated values of geometric structural parameters, Fourier transform infrared spectral data, highest occupied molecular orbital and lowest unoccupied molecular orbital, natural bond orbital, nucleus-independent chemical shifts, Fukui function, polarizability, hyperpolarizability, and UV data of compounds 1 and 2 clearly indicate that substitution of the amino group alters the physical properties of compound 2. The nucleus-independent chemical shift values of the amino-substituted phenyl ring reduces the aromatic character due to the lone pair electron on nitrogen involved in inductive and conjunction effects, as well as due to OH, NH2 and OH, NHCOCH3 in compounds 1 and 2, respectively. The effect of the solvent on different parameters was studied, and it was found that increasing the dielectric constant increased the parameter studied. The stability and planarity of the molecule’s effects on dipole moment, energy, polarizability, and hyperpolarizability were studied extensively.


icon graph This Abstract was viewed 409 times | icon graph Article PDF downloaded 194 times

How to Cite
(1)
Siluvairaj, R. R.; Govindasamy, V. P.; Govindasamy, R.; Chinnappan, P. V.; Venugopal, T. Comparative Study of 4-(4-aminophenyl)diazenyl)-2-(2-phenylhydrazono)methyl)phenol and N-(4-(4-Hydroxy-3-(2-phenylhydrazono)methyl)phenyl)diazenyl)phenyl)acetamide - DFT Method. Eur. J. Chem. 2024, 15, 50-70.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Zubrys, A.; Siebenmann, C. O. Antituberculous isonicotinylhydrazones of low toxicity. Can. J. Chem. 1955, 33, 11-14.
https://doi.org/10.1139/v55-003

[2]. Yoshino, J.; Kano, N.; Kawashima, T. Fluorescent azobenzenes and aromatic aldimines featuring an N-B interaction. Dalton Trans. 2013, 42, 15826-15834.
https://doi.org/10.1039/c3dt51689j

[3]. Baryshnikova, E. L.; Makhova, N. N. Thermal and base-induced rearrangements of furoxanylketones phenylhydrazones. Mendeleev Commun. 2000, 10, 190-191.
https://doi.org/10.1070/MC2000v010n05ABEH001351

[4]. Dimmock, J. R.; Vashishtha, S. C.; Stables, J. P. Anticonvulsant properties of various acetylhydrazones, oxamoylhydrazones and semicarbazones derived from aromatic and unsaturated carbonyl compounds. Eur. J. Med. Chem. 2000, 35, 241-248.
https://doi.org/10.1016/S0223-5234(00)00123-9

[5]. Rollas, S.; Gulerman, N.; Erdeniz, H. Synthesis and antimicrobial activity of some new hydrazones of 4-fluorobenzoic acid hydrazide and 3-acetyl-2,5-disubstituted-1,3,4-oxadiazolines. Farmaco 2002, 57, 171-174.
https://doi.org/10.1016/S0014-827X(01)01192-2

[6]. Maccari, R.; Ottanà, R.; Vigorita, M. G. In vitro advanced antimycobacterial screening of isoniazid-related hydrazones, hydrazides and cyanoboranes: Part 14. Bioorg. Med. Chem. Lett. 2005, 15, 2509-2513.
https://doi.org/10.1016/j.bmcl.2005.03.065

[7]. Özdemir, A.; Turan-Zitouni, G.; Kaplancikli, Z. A.; Tunali, Y. Synthesis and biological activities of new hydrazide derivatives. J. Enzyme Inhib. Med. Chem. 2009, 24, 825-831.
https://doi.org/10.1080/14756360802399712

[8]. Ajani, O. O.; Obafemi, C. A.; Nwinyi, O. C.; Akinpelu, D. A. Microwave assisted synthesis and antimicrobial activity of 2-quinoxalinone-3-hydrazone derivatives. Bioorg. Med. Chem. 2010, 18, 214-221.
https://doi.org/10.1016/j.bmc.2009.10.064

[9]. Li, L.; Li, H.; Liu, G.; Pu, S. A colorimetric and fluorescent chemosensor for selective detection of Cu2+ based on a new diarylethene with a benzophenone hydrazone unit. Luminescence 2017, 32, 1473-1481.
https://doi.org/10.1002/bio.3347

[10]. Biju, S.; Kumar, S. S.; Sadasivan, V. Synthesis, spectral and single crystal X-ray characterization of 5-(2-(2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrazol-4-yl)hydrazono)pyrimidine-2,4,6(1H,3H,5H)-trione and its copper(II) complexes. Polyhedron 2018, 144, 210-218.
https://doi.org/10.1016/j.poly.2018.01.019

[11]. Bernades, C.; Carravetta, M.; Coles, S. J.; van Eck, E. R. H.; Meekes, H.; da Piedade, M. E. M.; Pitak, M. B.; Podmore, M.; de Ruiter, T. A. H.; Söğütoğlu, L.-C.; Steendam, R. R. E.; Threlfall, T. The curious case of acetaldehyde phenylhydrazone: Resolution of a 120 year old puzzle where forms with vastly different melting points have the same structure. Cryst. Growth Des. 2019, 19, 907-917.
https://doi.org/10.1021/acs.cgd.8b01459

[12]. Sumathi, P.; Enoch, I. V. M. V. Fluorescence Chemosensing of Mg2+ by Phenylhydrazone of a Difluorenylpiperidin-4-one. Anal. Bioanal. Chem. Res. 2019, 6(2), 311-317.

[13]. Ramesh Babu, R.; Vijayan, N.; Gopalakrishnan, R.; Ramasamy, P. Growth and characterisation of benzaldehyde semicarbazone (BSC) single crystals. J. Cryst. Growth 2002, 240, 545-548.
https://doi.org/10.1016/S0022-0248(02)01075-8

[14]. Vogel, A. I.; Furniss, B. S. Vogel's textbook of practical organic chemistry; Longman Scientific and Technical, 1989.

[15]. Rauhut, G.; Pulay, P. Transferable scaling factors for density functional derived vibrational force fields. J. Phys. Chem. 1995, 99, 14572-14572.
https://doi.org/10.1021/j100039a056

[16]. Scott, A. P.; Radom, L. Harmonic vibrational frequencies: An evaluation of Hartree−Fock, Møller−Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem. 1996, 100, 16502-16513.
https://doi.org/10.1021/jp960976r

[17]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision A.1, Gaussian, Inc., Wallingford CT, 2003.

[18]. Koopmans, T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1934, 1, 104-113.
https://doi.org/10.1016/S0031-8914(34)90011-2

[19]. Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual density functional theory. Chem. Rev. 2003, 103, 1793-1874.
https://doi.org/10.1021/cr990029p

[20]. Pearson, R. G. Recent advances in the concept of hard and soft acids and bases. J. Chem. Educ. 1987, 64, 561-562.
https://doi.org/10.1021/ed064p561

[21]. Yang, W.; Mortier, W. J. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J. Am. Chem. Soc. 1986, 108, 5708-5711.
https://doi.org/10.1021/ja00279a008

[22]. Mulliken, R. S. Electronic population analysis on LCAO-MO molecular wave functions. III. Effects of hybridization on overlap and gross AO populations. J. Chem. Phys. 1955, 23, 2338-2342.
https://doi.org/10.1063/1.1741876

[23]. Portella, G.; Poater, J.; Solà, M. Assessment of Clar's aromatic π‐sextet rule by means of PDI, NICS and HOMA indicators of local aromaticity. J. Phys. Org. Chem. 2005, 18, 785-791.
https://doi.org/10.1002/poc.938

[24]. Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. von R. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 2005, 105, 3842-3888.
https://doi.org/10.1021/cr030088+

[25]. Piekarski, A. M.; Mills, N. S.; Yousef, A. Dianion and dication of tetrabenzo[5.7]fulvalene. Greater antiaromaticity than aromaticity in comparable systems. J. Am. Chem. Soc. 2008, 130, 14883-14890.
https://doi.org/10.1021/ja8042323

[26]. Zborowski, K.; Proniewicz, L. M. Theoretical studies on aromaticity of selected hydroxypyrones and their cations and anions. Part 2. Electron delocalisation in the OCCO group. J. Phys. Org. Chem. 2008, 21, 207-214.
https://doi.org/10.1002/poc.1294

[27]. Iqbal, P.; Patel, D. S.; Bharatam, P. V. Ab initio study on N,N′,N″‐triaminoguanidine. J. Phys. Org. Chem. 2007, 20, 1072-1080.
https://doi.org/10.1002/poc.1256

[28]. Jacquemin, D.; André, J.-M.; Perpète, E. A. Geometry, dipole moment, polarizability and first hyperpolarizability of polymethineimine: An assessment of electron correlation contributions. J. Chem. Phys. 2004, 121, 4389-4396.
https://doi.org/10.1063/1.1775181

[29]. Zeitouny, J.; Aurisicchio, C.; Bonifazi, D.; De Zorzi, R.; Geremia, S.; Bonini, M.; Palma, C.-A.; Samorì, P.; Listorti, A.; Belbakra, A.; Armaroli, N. Photoinduced structural modifications in multicomponent architectures containing azobenzene moieties as photoswitchable cores. J. Mater. Chem. 2009, 19, 4715-4724.
https://doi.org/10.1039/b905287a

[30]. Langhals, H. Color Chemistry. Synthesis, Properties and Applications of Organic Dyes and Pigments. 3rd revised edition. By Heinrich Zollinger. Angew. Chem. Int. Ed Engl. 2004, 43, 5291-5292.
https://doi.org/10.1002/anie.200385122

[31]. Datta, A.; Sheu, S.-C.; Liu, P.-H.; Huang, J.-H. DichloridoN′-[(pyridin-2-yl)methylidene-κN]acetohydrazide-κ2N′,Ocopper(II). Acta Crystallogr. Sect. E Struct. Rep. Online 2011, 67, m1852-m1852.
https://doi.org/10.1107/S1600536811049671

[32]. Qian, H.-F.; Tao, T.; Feng, Y.-N.; Wang, Y.-G.; Huang, W. Crystal structures, solvatochromisms and DFT computations of three disperse azo dyes having the same azobenzene skeleton. J. Mol. Struct. 2016, 1123, 305-310.
https://doi.org/10.1016/j.molstruc.2016.06.042

[33]. Kupka, T.; Buczek, A.; Broda, M. A.; Stachów, M.; Tarnowski, P. DFT studies on the structural and vibrational properties of polyenes. J. Mol. Model. 2016, 22, 101.
https://doi.org/10.1007/s00894-016-2969-1

[34]. Teimouri, A.; Chermahini, A. N.; Emami, M. Synthesis, characterization, and DFT studies of a novel azo dye derived from racemic or optically active binaphthol. Tetrahedron 2008, 64, 11776-11782.
https://doi.org/10.1016/j.tet.2008.09.104

[35]. Thomas, K. R. J.; Kapoor, N.; Lee, C.-P.; Ho, K.-C. Organic dyes containing pyrenylamine‐based cascade donor systems with different aromatic π linkers for dye‐sensitized solar cells: Optical, electrochemical, and device characteristics. Chem. Asian J. 2012, 7, 738-750.
https://doi.org/10.1002/asia.201100849

[36]. Yıldırım, A. Ö.; Yıldırım, M. H.; Kaştaş, Ç. A. Studies on the synthesis, spectroscopic analysis and DFT calculations on (E)-4,6-dichloro-2-[(2-chlorophenylimino)methyl]-3methoxyphenol as a novel Schiff's base. J. Mol. Struct. 2016, 1113, 1-8.
https://doi.org/10.1016/j.molstruc.2016.02.041

[37]. Monajjemi, M.; Nouri, A.; Monajemi, H. Qm and ab initio investigation on the hydrogen bonding, nmr chemical shifts and solvent effects on the dppe. Indones. J. Chem. 2010, 7, 260-272.
https://doi.org/10.22146/ijc.21667

[38]. Targema, M.; Obi-Egbedi, N. O.; Adeoye, M. D. Molecular structure and solvent effects on the dipole moments and polarizabilities of some aniline derivatives. Comput. Theor. Chem. 2013, 1012, 47-53.
https://doi.org/10.1016/j.comptc.2013.02.020

[39]. Oyeneyin, O. E.; Adejoro, I. A.; Ogunyemi, B. T.; Esan, O. T. Structural and solvent dependence on the molecular and nonlinear optical properties of 10-octyl thiophene-based phenothiazine and substituted derivatives - a theoretical approach. J. Taibah Univ. SCI 2018, 12, 483-493.
https://doi.org/10.1080/16583655.2018.1485274

[40]. Omer, R.; Koparir, P.; Ahmed, L.; Koparir, M. Computational determination the reactivity of salbutamol and propranolol drugs. Turkish Computational and Theoretical Chemistry 2020, 4, 67-75.
https://doi.org/10.33435/tcandtc.768758

[41]. Sıdır, İ.; Sıdır, Y. G.; Kumalar, M.; Taşal, E. Ab initio Hartree-Fock and density functional theory investigations on the conformational stability, molecular structure and vibrational spectra of 7-acetoxy-6-(2,3-dibromopropyl)-4,8-dimethylcoumarin molecule. J. Mol. Struct. 2010, 964, 134-151.
https://doi.org/10.1016/j.molstruc.2009.11.023

[42]. Arivazhagan, M.; Manivel, S.; Jeyavijayan, S.; Meenakshi, R. Vibrational spectroscopic (FTIR and FT-Raman), first-order hyperpolarizablity, HOMO, LUMO, NBO, Mulliken charge analyses of 2-ethylimidazole based on Hartree-Fock and DFT calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 134, 493-501.
https://doi.org/10.1016/j.saa.2014.06.108

[43]. Demircioğlu, Z.; Kaştaş, Ç. A.; Büyükgüngör, O. Theoretical analysis (NBO, NPA, Mulliken Population Method) and molecular orbital studies (hardness, chemical potential, electrophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2-methylphenylimino) methyl)-3-methoxyphenol. J. Mol. Struct. 2015, 1091, 183-195.
https://doi.org/10.1016/j.molstruc.2015.02.076

[44]. Chocholoušová, J.; Špirko, V.; Hobza, P. First local minimum of the formic acid dimer exhibits simultaneously red-shifted O-H⋯O and improper blue-shifted C-H⋯O hydrogen bonds. Phys. Chem. Chem. Phys. 2004, 6, 37-41.
https://doi.org/10.1039/B314148A

[45]. Alabugin, I. V.; Manoharan, M.; Weinhold, F. A. Blue-shifted and red-shifted hydrogen bonds in hypervalent rare-gas FRg−H···Y sandwiches. J. Phys. Chem. A 2004, 108, 4720-4730.
https://doi.org/10.1021/jp049723l

[46]. Alabugin, I. V.; Gilmore, K. M.; Peterson, P. W. Hyperconjugation. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 109-141.
https://doi.org/10.1002/wcms.6

[47]. Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735-746.
https://doi.org/10.1063/1.449486

[48]. Parr, R. G.; Chattaraj, P. K. Principle of maximum hardness. J. Am. Chem. Soc. 1991, 113, 1854-1855.
https://doi.org/10.1021/ja00005a072

[49]. Sebastian, K. L. On the proof of the principle of maximum hardness. Chem. Phys. Lett. 1994, 231, 40-42.
https://doi.org/10.1016/0009-2614(94)01210-5

[50]. Wang, S.; Cao, J.; Jia, W.; Guo, W.; Yan, S.; Wang, Y.; Zhang, P.; Chen, H.-Y.; Huang, S. Single molecule observation of hard-soft-acid-base (HSAB) interaction in engineered Mycobacterium smegmatisporin A (MspA) nanopores. Chem. Sci. 2020, 11, 879-887.
https://doi.org/10.1039/C9SC05260G

[51]. Ashraf, R. S.; Kronemeijer, A. J.; James, D. I.; Sirringhaus, H.; McCulloch, I. A new thiophene substituted isoindigo based copolymer for high performance ambipolar transistors. Chem. Commun. (Camb.) 2012, 48, 3939-3941.
https://doi.org/10.1039/c2cc30169e

[52]. Kanimozhi, C.; Yaacobi-Gross, N.; Chou, K. W.; Amassian, A.; Anthopoulos, T. D.; Patil, S. Diketopyrrolopyrrole-diketopyrrolo pyrrole-based conjugated copolymer for high-mobility organic field-effect transistors. J. Am. Chem. Soc. 2012, 134, 16532-16535.
https://doi.org/10.1021/ja308211n

[53]. Parr, R. G.; Pearson, R. G. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105, 7512-7516.
https://doi.org/10.1021/ja00364a005

[54]. Gece, G. The use of quantum chemical methods in corrosion inhibitor studies. Corros. Sci. 2008, 50, 2981-2992.
https://doi.org/10.1016/j.corsci.2008.08.043

[55]. Sheela, N. R.; Muthu, S.; Sampathkrishnan, S. Molecular orbital studies (hardness, chemical potential and electrophilicity), vibrational investigation and theoretical NBO analysis of 4-4′-(1H-1,2,4-triazol-1-yl methylene) dibenzonitrile based on abinitio and DFT methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 120, 237-251.
https://doi.org/10.1016/j.saa.2013.10.007

[56]. Ajibade Adejoro, I.; Emmanuel Oyeneyin, O.; Temitope Ogunyemi, B. Computational investigation on substituent and solvent effects on the electronic, geometric and spectroscopic properties of azobenzene and some substituted derivatives. Int. J. Comput. Theor. Chem. 2015, 3, 50-57.
https://doi.org/10.11648/j.ijctc.20150306.12

[57]. Feixas, F.; Matito, E.; Poater, J.; Solà, M. Quantifying aromaticity with electron delocalisation measures. Chem. Soc. Rev. 2015, 44, 6434-6451.
https://doi.org/10.1039/C5CS00066A

[58]. Stanger, A. Nucleus-independent chemical shifts (NICS): Distance dependence and revised criteria for aromaticity and antiaromaticity. J. Org. Chem. 2006, 71, 883-893.
https://doi.org/10.1021/jo051746o

[59]. Ostrowski, S.; Dobrowolski, J. C. What does the HOMA index really measure? RSC Adv. 2014, 4, 44158-44161.
https://doi.org/10.1039/C4RA06652A

[60]. Parr, R. G.; Yang, W. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc. 1984, 106, 4049-4050.
https://doi.org/10.1021/ja00326a036

[61]. Parr, R. G.; Szentpály, L. v.; Liu, S. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922-1924.
https://doi.org/10.1021/ja983494x

[62]. Jamróz, M. H. Vibrational Energy Distribution Analysis VEDA 4, Warsaw, 2004-2010.

[63]. Kolandaivel, P.; Praveena, G.; Selvarengan, P. Study of atomic and condensed atomic indices for reactive sites of molecules. J. Chem. Sci. (Bangalore) 2005, 117, 591-598.
https://doi.org/10.1007/BF02708366

[64]. Okulik, N.; Jubert, A. H. Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Int. Elect, J. Mol. Des. 2005, 4, 17-30. https://biochempress.com/Files/IECMD_2003/ IECMD_2003_016.pdf (accessed May 4, 2023).

[65]. Politzer, P.; Concha, M. C.; Murray, J. S. Density functional study of dimers of dimethylnitramine. Int. J. Quantum Chem. 2000, 80, 184-192.
https://doi.org/10.1002/1097-461X(2000)80:2<184::AID-QUA12>3.0.CO;2-O

[66]. Rashid, M. A. M.; Hayati, D.; Kwak, K.; Hong, J. Theoretical investigation of azobenzene-based photochromic dyes for dye-sensitized solar cells. Nanomaterials (Basel) 2020, 10, 914-937.
https://doi.org/10.3390/nano10050914

[67]. Joshi, B. D. Chemical reactivity, dipole moment and first hyperpolarizability of aristolochic acid I. J. Inst. Sci. Technol. 2016, 21, 1-9.
https://doi.org/10.3126/jist.v21i1.16030

[68]. Pathak, S. K.; Srivastava, R.; Sachan, A. K.; Prasad, O.; Sinha, L.; Asiri, A. M.; Karabacak, M. Experimental (FT-IR, FT-Raman, UV and NMR) and quantum chemical studies on molecular structure, spectroscopic analysis, NLO, NBO and reactivity descriptors of 3,5-Difluoroaniline. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 135, 283-295.
https://doi.org/10.1016/j.saa.2014.06.149

[69]. Obot, I. B.; Johnson, A. S. Ab initio, DFT and TD-DFT electronic absorption spectra investigations on. Elixir Comp. Chem. 2012, 43, 6658-6661. https://www.elixirpublishers.com/articles/ 1687775307_201202028.pdf (accessed May 4, 2023).

[70]. Issaoui, N.; Ghalla, H.; Muthu, S.; Flakus, H. T.; Oujia, B. Molecular structure, vibrational spectra, AIM, HOMO-LUMO, NBO, UV, first order hyperpolarizability, analysis of 3-thiophenecarboxylic acid monomer and dimer by Hartree-Fock and density functional theory. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 136, 1227-1242.
https://doi.org/10.1016/j.saa.2014.10.008

Supporting Agencies

Annamalai University, Annamalainagar-608002, Tamilnadu, India
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).