European Journal of Chemistry

Entropy of the surface catalytic reaction: Expansion of the advanced H2S paradigm to novel catalytic systems


Main Article Content

Anatolii Startsev


The main provisions of the recently developed concept of the crucial role of catalysts in the process of low-temperature decomposition of H2S to produce hydrogen and elemental sulfur are considered. The concept is based on the non-equilibrium thermodynamics of an irreversible process in an open system. It is shown that irreversible chemical reactions prohibited in the gas phase take place on the catalyst surface under conditions of non-equilibrium thermodynamics at ambient temperature and pressure. This became possible due to the Gibbs free energy accumulated on the catalyst surface as a result of exothermic processes of chemisorption and dissociation of H2S molecules and the dissipation of entropy in the form of bound energy into the environment. The innovative proposed method of H2S utilization will replace the long-outdated Claus method of H2S disposal with the production of water and sulfur (up to 100 million tons per year, more than 1,000 units in the world) with advanced technology to produce hydrogen and diatomic gaseous sulfur. Various types of solid catalysts have been developed to implement advanced technology. The advanced H2S paradigm of catalytic processing allows unexpected chemical reactions to be realized that cannot be carried out by traditional methods under normal conditions. Atomically adsorbed hydrogen and sulfur species formed as a result of H2S dissociation can react with chemically inert molecules of methane, CO2, nitrogen, and argon. It is concluded that at the moment all prerequisites have been created for initiating full-scale scientific, technological, and commercial projects to implement the innovative idea of using the toxic substance H2S to serve humanity.

icon graph This Abstract was viewed 84 times | icon graph Article PDF downloaded 20 times

How to Cite
Startsev, A. Entropy of the Surface Catalytic Reaction: Expansion of the Advanced H2S Paradigm to Novel Catalytic Systems. Eur. J. Chem. 2024, 15, 186-193.

Article Details

Crossref - Scopus - Google - European PMC

[1]. Haynie, D. T. Biological Thermodynamics 2ed; Cambridge University Press, 2008.

[2]. Schlegel, H. G.; Bowien, B. Autotrophic bacteria; Science Tech Publishers, 1989.

[3]. Zaman, J.; Chakma, A. Production of hydrogen and sulfur from hydrogen sulfide. Fuel Process. Technol. 1995, 41, 159-198.

[4]. Luinstra, E. A. Hydrogen from H2s: Technologies and economics; Sulfotech Research: Calgary, AB, Canada, 1995.

[5]. Reverberi, A. P.; Klemeš, J. J.; Varbanov, P. S.; Fabiano, B. A review on hydrogen production from hydrogen sulphide by chemical and photochemical methods. J. Clean. Prod. 2016, 136, 72-80.

[6]. Startsev, A. N. Hydrogen sulfide as a source of hydrogen production. Russ. Chem. Bull. 2017, 66, 1378-1397.

[7]. De Crisci, A. G.; Moniri, A.; Xu, Y. Hydrogen from hydrogen sulfide: towards a more sustainable hydrogen economy. Int. J. Hydrogen Energy 2019, 44, 1299-1327.

[8]. Chan, Y. H.; Loy, A. C. M.; Cheah, K. W.; Chai, S. Y. W.; Ngu, L. H.; How, B. S.; Li, C.; Lock, S. S. M.; Wong, M. K.; Yiin, C. L.; Chin, B. L. F.; Chan, Z. P.; Lam, S. S. Hydrogen sulfide (H2S) conversion to hydrogen (H2) and value-added chemicals: Progress, challenges and outlook. Chem. Eng. J. 2023, 458, 141398.

[9]. Aljama, H.; Alaithan, Z.; Almofleh, A. Catalytic conversion of H2S to H2: Challenges and catalyst limitations. J. Phys. Chem. C Nanomater. Interfaces 2023, 127, 9022-9029.

[10]. Startsev, A. N. The crucial role of catalysts in the reaction of low temperature decomposition of hydrogen sulfide: Non-equilibrium thermodynamics of the irreversible process in an open system. Mol. Catal. 2020, 497, 111240.

[11]. Startsev, A. N. Shift of the H2S paradigm. J. Sulphur Chem. 2022, 43, 671-684.

[12]. Startsev, A. N. Low temperature catalytic decomposition of hydrogen sulfide into hydrogen. (accessed January 15, 2024).

[13]. Startsev, A. N. Concept of acid-base catalysis by metal sulfides. Catal. Today 2009, 144, 350-357.

[14]. Zakharov, I. I.; Startsev, A. N.; Zhidomirov, G. M.; Parmon, V. N. Oxidative addition of dihydrogen as the key step of the active center formation in the HDS sulfide bimetallic catalysts: ab initio MO/MP2 study. J. Mol. Catal. A Chem. 1999, 137, 101-111.

[15]. Prigogine, I. Introduction to thermodynamics of irreversible processes; 3rd ed.; John Wiley & Sons: Nashville, TN, 1968.

[16]. Startsev, A. N.; Zakharov, I. I.; Voroshina, O. V.; Pashigreva, A. V.; Parmon, V. N. Low-temperature decomposition of hydrogen sulfide under the conditions of conjugate chemisorption and catalysis. Dokl. Phys. Chem. 2004, 399, 283-286.

[17]. Zakharov, I. I.; Startsev, A. N.; Voroshina, O. V.; Pashigreva, A. V.; Chashkova, N. A.; Parmon, V. N. The molecular mechanism of low-temperature decomposition of hydrogen sulfide under conjugated chemisorption-catalysis conditions. Russ. J. Phys. Chem. 2006, 80, 1403-1410.

[18]. Startsev, A. N.; Pashigreva, A. V.; Voroshina, O. V.; Zakharov, I. I.; Parmon, V. N. Method of decomposition of hydrogen sulfide and/or mercaptans. Russ. Patent No 2,261,838, 2005.

[19]. Startsev, A. N.; Kruglyakova, O. V.; Chesalov, Y. A.; Paukshtis, E. A.; Avdeev, V. I.; Ruzankin, S. P.; Zhdanov, A. A.; Molina, I. Y.; Plyasova, L. M. Low-temperature catalytic decomposition of hydrogen sulfide on metal catalysts under layer of solvent. J. Sulphur Chem. 2016, 37, 229-240.

[20]. Koestner, R. J.; Salmeron, M.; Kollin, E. B.; Gland, J. L. Adsorption and surface reactions of H2S on clean and S-covered pt(111). Surf. Sci. 1986, 172, 668-690.

[21]. Startsev, A. N.; Kruglyakova, O. V.; Chesalov, Y. A.; Ruzankin, S. P.; Kravtsov, E. A.; Larina, T. V.; Paukshtis, E. A. Low temperature catalytic decomposition of hydrogen sulfide into hydrogen and diatomic gaseous sulfur. Top. Catal. 2013, 56, 969-980.

[22]. Startsev, A. N.; Kruglyakova, O. V. Diatomic gaseous sulfur obtained at low temperature catalytic decomposition of hydrogen sulfide. J. Chem. Chem. Eng. 2013, 7, 1007-1013. (accessed January 15, 2024).

[23]. Startsev, A. N. Diatomic sulfur: a mysterious molecule. J. Sulphur Chem. 2019, 40, 435-450.

[24]. Startsev, A. N. A catalyst for the production of hydrogen and diatomic sulfur gas during the decomposition of hydrogen sulfide. Russian Patent No 2,777,440, 2021.

[25]. Alfonso, D. R. First-principles studies of H2S adsorption and dissociation on metal surfaces. Surf. Sci. 2008, 602, 2758-2768.

[26]. Albenze, E. J.; Shamsi, A. Density functional theory study of hydrogen sulfide dissociation on bi-metallic Ni-Mo catalysts. Surf. Sci. 2006, 600, 3202-3216.

[27]. Alfonso, D. R.; Cugini, A. V.; Sorescu, D. C. Adsorption and decomposition of H2S on Pd(111) surface: a first-principles study. Catal. Today 2005, 99, 315-322.

[28]. Usman, T.; Tan, M.-Q. Interaction of H2S with perfect and S-covered Ni(110) surface: A first-principles study. Int. J. Hydrogen Energy 2020, 45, 30622-30633.

[29]. Hyman, M. P.; Loveless, B. T.; Medlin, J. W. A density functional theory study of H2S decomposition on the (111) surfaces of model Pd-alloys. Surf. Sci. 2007, 601, 5382-5393.

[30]. Jiang, D. E.; Carter, E. A. Adsorption, diffusion, and dissociation of H2S on Fe(100) from first principles. J. Phys. Chem. B 2004, 108, 19140-19145.

[31]. Abufager, P. N.; Lustemberg, P. G.; Crespos, C.; Busnengo, H. F. DFT study of dissociative adsorption of hydrogen sulfide on Cu(111) and Au(111). Langmuir 2008, 24, 14022-14026.

[32]. Akande, S. O.; Bentria, E. T.; Bouhali, O.; El-Mellouhi, F. Searching for the rate determining step of the H2S reaction on Fe (110) surface. Appl. Surf. Sci. 2020, 532, 147470.

[33]. Benson, S. W. Thermochemistry and kinetics of sulfur-containing molecules and radicals. Chem. Rev. 1978, 78, 23-35.

[34]. Vedeneyev, V. I.; Gurvich, L. V.; Kondrat'yev, V. N.; Medvedev, V. A.; Frankevich, Y. L. Bond energies ionization potentials and electron affinities; St Martin's Press: New York, NY, 1966. (accessed January 15, 2024).

[35]. Darwent, B. D. Bond dissociation energies in simple molecules; National Bureau of Standards: Gaithersburg, MD, 1970.

[36]. Rodriguez, J. A.; Hrbek, J.; Kuhn, M.; Jirsak, T.; Chaturvedi, S.; Maiti, A. Interaction of sulfur with Pt(111) and Sn/Pt(111): Effects of coverage and metal-metal bonding on reactivity toward sulfur. J. Chem. Phys. 2000, 113, 11284-11292.

[37]. Christmann, K.; Ertl, G. Interaction of hydrogen with Pt(111): The role of atomic steps. Surf. Sci. 1976, 60, 365-384.

[38]. Poelsema, B.; Lenz, K.; Comsa, G. The dissociative adsorption of hydrogen on defect-'free' Pt(111). J. Phys. Condens. Matter 2010, 22, 304006.

[39]. Marsh, A. L.; Becraft, K. A.; Somorjai, G. A. Methane dissociative adsorption on the pt(111) surface over the 300−500 K temperature and 1−10 Torr pressure ranges. J. Phys. Chem. B 2005, 109, 13619-13622.

[40]. Startsev, A. N. Hydrogen production from hydrogen sulfide of Black Sea in the process of low temperature catalytic decomposition of H2S. Int. Sci. J Alternative Energy and Ecology 2021, 25-27, 90-105. (accessed January 15, 2024).

[41]. Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; Kerfeld, C. A.; Morris, R. H.; Peden, C. H. F.; Portis, A. R.; Ragsdale, S. W.; Rauchfuss, T. B.; Reek, J. N. H.; Seefeldt, L. C.; Thauer, R. K.; Waldrop, G. L. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 2013, 113, 6621-6658.

[42]. Hoffman, B. M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D. R.; Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: The next stage. Chem. Rev. 2014, 114, 4041-4062.

[43]. Chon, H.; Fisher, R. A.; McCammon, R. D.; Aston, J. G. Interaction of helium, neon, argon, and krypton with a clean platinum surface. J. Chem. Phys. 1962, 36, 1378-1382.

Most read articles by the same author(s)

Dimensions - Altmetric - scite_ - PlumX

Downloads and views


Download data is not yet available.


Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms


Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).