European Journal of Chemistry

pH and time effectiveness on azithromycin drug: A spectrophotometric approach


Main Article Content

Adel Ahmed Saeed
Mokhtar Salim Al-Salimi
Amani Khalid Muthanna
Maysa Thabet Saleh
Ahmed Hassan Ahmed
Fadhel Mahmoud Qasam
Hadeel Adnan Alwan
Ibrahim Mukhtar Alturky
Musab Muhammed Hamood


The present study describes a straightforward method to assess the quality control and diagnostic characteristics of three different brands of film-coated azithromycin tablets. The method is based on the reduction of potassium permanganate in a slightly alkaline solution using azithromycin. The effects of acidity and time were investigated to evaluate the reliability of the method. A spectroscopic technique was used to determine the concentration of azithromycin in a sample by measuring the decrease in potassium permanganate absorbance at a specific wavelength of 547 nm. Azithromycin causes decolorization of potassium permanganate with reduction. The method allowed the determination of azithromycin concentrations ranging from 3-15 μg/mL in the final solution. The usual components present in the azithromycin tablets were observed not to interfere with the method. The results obtained for the determination of azithromycin in tablets were in good agreement with the allowed limit.

icon graph This Abstract was viewed 149 times | icon graph Article PDF downloaded 47 times

How to Cite
Saeed, A. A.; Al-Salimi, M. S.; Muthanna, A. K.; Saleh, M. T.; Ahmed, A. H.; Qasam, F. M.; Alwan, H. A.; Alturky, I. M.; Hamood, M. M. PH and Time Effectiveness on Azithromycin Drug: A Spectrophotometric Approach. Eur. J. Chem. 2024, 15, 120-127.

Article Details

Crossref - Scopus - Google - European PMC

[1]. Saita, M. G.; Aleo, D.; Melilli, B.; Mangiafico, S.; Cro, M.; Sanfilippo, C.; Patti, A. pH-Dependent stability of azithromycin in aqueous solution and structure identification of two new degradation products. J. Pharm. Biomed. Anal. 2018, 158, 47-53.

[2]. Hoepelman, I. M.; Schneider, M. M. E. Azithromycin: the first of the tissue-selective azalides. Int. J. Antimicrob. Agents 1995, 5, 145-167.

[3]. Zuckerman, J. M.; Qamar, F.; Bono, B. R. Review of macrolides (azithromycin, clarithromycin), ketolids (telithromycin) and glycylcyclines (tigecycline). Med. Clin. North Am. 2011, 95, 761-791.

[4]. Li, H.; Zhou, Y.; Fan, F.; Zhang, Y.; Li, X.; Yu, H.; Zhao, L.; Yi, X.; He, G.; Fujita, J.; Jiang, D. Effect of azithromycin on patients with diffuse panbronchiolitis: Retrospective study of 51 cases. Intern. Med. 2011, 50, 1663-1669.

[5]. Kelly, C.; Chalmers, J. D.; Crossingham, I.; Relph, N.; Felix, L. M.; Evans, D. J.; Milan, S. J.; Spencer, S. Macrolide antibiotics for bronchiectasis. Cochrane Libr. 2018, 2018, 3, CD012406.

[6]. Giamarellos-Bourboulis, E. J. Macrolides beyond the conventional antimicrobials: a class of potent immunomodulators. Int. J. Antimicrob. Agents 2008, 31, 12-20.

[7]. Akhyani, M.; Ehsani, A. H.; Ghiasi, M.; Jafari, A. K. Comparison of efficacy of azithromycin vs. doxycycline in the treatment of rosacea: a randomized open clinical trial. Int. J. Dermatol. 2008, 47, 284-288.

[8]. Gannon, S. C.; Cantley, M. D.; Haynes, D. R.; Hirsch, R.; Bartold, P. M. Azithromycin suppresses human osteoclast formation and activity in vitro. J. Cell. Physiol. 2013, 228, 1098-1107.

[9]. Beović, B.; Doušak, M.; Ferreira-Coimbra, J.; Nadrah, K.; Rubulotta, F.; Belliato, M.; Berger-Estilita, J.; Ayoade, F.; Rello, J.; Erdem, H. Antibiotic use in patients with COVID-19: a 'snapshot' Infectious Diseases International Research Initiative (ID-IRI) survey. J. Antimicrob. Chemother. 2020, 75, 3386-3390.

[10]. Chertow, D. S.; Memoli, M. J. Bacterial coinfection in influenza: A grand rounds review. JAMA 2013, 309, 275-282.

[11]. Retsema, J.; Girard, A.; Schelkly, W.; Manousos, M.; Anderson, M.; Bright, G.; Borovoy, R.; Brennan, L.; Mason, R. Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. Antimicrob. Agents Chemother. 1987, 31, 1939-1947.

[12]. Piscitelli, S. C.; Danziger, L. H.; Rodvold, K. A. Clarithromycin and azithromycin: new macrolide antibiotics. Clin. Pharm. 1992, 11, 137-152.

[13]. Thakur, D.; Sharma, R. Solid dispersion a novel approach for enhancement of solubility and dissolution rate: a review. Indian J. Pharm. Biol. Res. 2019, 7, 05-11.

[14]. Chaulang, G.; Patil, K.; Ghodke, D.; Khan, S.; Yeole, P. Preparation and Characterization of Solid Dispersion Tablet of Furosemide with Crospovidone. Research Journal of Pharmacy and Technology 2008, 1 (4), 386-389

[15]. Saeed, A. A. M.; Al-Hariri, F.; Muthanna, A. K.; Molhi, M.; Hassan, A.; Mahmoud, F.; Adnan, H.; Muhammed, M.; Mukhtar, I. Researcher journal In-vitro Physicochemical Evaluation of Different Marketed Brands of Azithromycin Available in Aden-Yemen. Researcher Journal 2022, 1, 128-137

[16]. Rachidi, M.; Elharti, J.; Digua, K.; Cherrah*, Y.; Bouklouze*, A. New spectrophotometric method for azithromycin determination. Anal. Lett. 2006, 39, 1917-1926.

[17]. Suhagia, B. N.; Shah, S. A.; Rathod, I. S.; Patel, H. M.; Doshi, K. R. Determination of Azithromycin in pharmaceutical dosage forms by Spectrophotometric method. Indian J. Pharm. Sci. 2006, 68, 242-245.

[18]. Sawicki, E.; Beijnen, J. H.; Schellens, J. H. M.; Nuijen, B. Pharmaceutical development of an oral tablet formulation containing a spray dried amorphous solid dispersion of docetaxel or paclitaxel. Int. J. Pharm. 2016, 511, 765-773.

[19]. Yoshida, I.; Sakai, Y. The applications of the content uniformity test and the weight variation test on process validation tests of multiple ingredient preparations. Chem. Pharm. Bull. (Tokyo) 1999, 47, 678-683.

[20]. Singh, R.; Saxena, M.; Sahay, D.; Singh, S. In-vitro study of quality control parameters of three different brands of azithromycin tablets. Int. J. Basic Clin. Pharmacol. 2017, 6, 1572-1576.

[21]. Sharmin, N.; Shanta, N. S.; Bachar, S. C. Spectrophotometric analysis of Azithromycin and its pharmaceutical dosage forms: Comparison between Spectrophotometry and HPLC. Dhaka Univ. J. Pharm. Sci. 2015, 12, 171-179.

[22]. Jayanna, B. K.; Nagendrappa, G.; Arunkumar; Gowda, N. Spectrophotometric estimation of azithromycin in tablets. Indian J. Pharm. Sci. 2012, 74, 365-367.

[23]. Sivasubramanian, L.; Mervin, M. A.; Jayashankar, L.; Ramu, P.; Raja, T. K. Visible Spectrophotometric determination of Azithromycin in Tablets. Indian Journal of Pharmaceutical Sciences 2004, 66 (2), 249-251 metric-methods-for-the-determination-of-azithromycin-in-tablets-655.html.

[24]. Sultana, N.; Arayne, M. S.; Hussain, F.; Fatima, A. Degradation studies of azithromycin and its spectrophotometric determination in pharmaceutical dosage forms. Pak. J. Pharm. Sci. 2006, 19, 98-103.

[25]. Rodríguez-López, L.; Santás-Miguel, V.; Núñez-Delgado, A.; Álvarez-Rodríguez, E.; Pérez-Rodríguez, P.; Arias-Estévez, M. Influence of pH, humic acids, and salts on the dissipation of amoxicillin and azithromycin under simulated sunlight. Span. J. Soil Sci. 2022, 12, 1-11.

[26]. Farghaly, O. A. E.-M.; Mohamed, N. A. L. Voltammetric determination of azithromycin at the carbon paste electrode. Talanta 2004, 62, 531-538.

[27]. Zhang, Y.; Liu, X.; Cui, Y.; Huang, H.; Chi, N.; Tang, X. Aspects of degradation kinetics of azithromycin in aqueous solution. Chromatographia 2009, 70, 67-73.

[28]. Čizmić, M.; Ljubas, D.; Rožman, M.; Ašperger, D.; Ćurković, L.; Babić, S. Photocatalytic degradation of azithromycin by nanostructured TiO2 film: Kinetics, degradation products, and toxicity. Materials (Basel) 2019, 12, 873.

Supporting Agencies

The Supreme Board of Drug and Medical Appliances, Aden, Yemen
Most read articles by the same author(s)

Dimensions - Altmetric - scite_ - PlumX

Downloads and views


Download data is not yet available.


Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms


Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).