European Journal of Chemistry

Synthesis, spectral investigation, biological efficacy, and computational evaluation of the hydroxamic acid chelator and its Zn(II) metal complex with potent anticancer activity

Crossmark


Main Article Content

Shubham Sharma
Maridula Thakur
Sohini Sharma
Shamsher Singh Kanwar
Meena Kumari

Abstract

The biologically active Zn(II) complex [Zn(HL)2] (HL = 3-OCH3C6H4-(CO)NHO) has been synthesized by the reaction of ZnSO4 with potassium 3-methoxybenzohydroxamate (KHL, 3-OCH3C6H4CONHOK) in a 1:2 molar ratio in MeOH solvent medium simply stirring, avoiding drastic conditions and hazardous chemicals. Physicochemical (elemental analysis, molar conductivity) and spectroscopic studies (FTIR, UV-visible, 1H NMR, and 13C NMR) were conducted to characterize the complex. The coordination involving the oxygen atoms of carbonyl and hydroxamic groups (O,O coordination) and the presence of a distorted tetrahedral geometry around the complex have been inferred on the basis of computational studies. Computational investigations indicate that the complex exhibits greater stability in comparison to that of the ligand, and additional calculations were conducted to assess various chemical reactivity parameters. The biological efficacy of the complex has been evaluated through investigations of its antimicrobial, cytotoxic, and anticancer properties, complemented by DNA binding and docking analyzes. The antimicrobial activity of the ligand and the complex against selected bacteria (S. aureus, S. typhi, E. coli, S. flexneri) and fungi (R. solani, A. alternata, and F. sambucinum) was also evaluated. The complex was found to be more toxic against the bacterial species S. typhi and E. coli and showed efficient inhibitory activity against the fungi F. sambucinum and A. alternata. The results were compared with the standard antibacterial drug tetracycline and the antifungal drug amphotericin B. In vitro cytotoxicity assessments were performed using L20B cell lines, which are malignant mouse cells expressing the human poliovirus receptor (CD155), and Rhabdomyosarcoma RD cancer cell lines derived from muscle tissue. The findings revealed decreased cell viability, which is correlated with the increase in the concentrations of the test compounds, demonstrating potent anticancer activity specifically against rhabdomyosarcoma cancer cell lines. Additionally, molecular docking investigations were performed to explore the molecular interactions between the ligand, the complex, and the crystal structure of the A. alternata allergen (3V0R), further supporting the efficacy of both the ligand and the complex.


icon graph This Abstract was viewed 38 times | icon graph Article PDF downloaded 7 times

How to Cite
(1)
Sharma, S.; Thakur, M.; Sharma, S.; Kanwar, S. S.; Kumari, M. Synthesis, Spectral Investigation, Biological Efficacy, and Computational Evaluation of the Hydroxamic Acid Chelator and Its Zn(II) Metal Complex With Potent Anticancer Activity. Eur. J. Chem. 2024, 15, 166-177.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Eshghi, F.; Mehrabadi, Z.; Farsadrooh, M.; Hayati, P.; Javadian, H.; Karimi, M.; Karimi-Maleh, H.; Rostamnia, S.; Karaman, C.; Aghababaei, F. Photocatalytic degradation of remdesivir nucleotide pro-drug using [Cu(1-methylimidazole)4(SCN)2] nanocomplex synthesized by sonochemical process: Theoretical, hirshfeld surface analysis, degradation kinetic, and thermodynamic studies. Environ. Res. 2023, 222, 115321.
https://doi.org/10.1016/j.envres.2023.115321

[2]. Rashidi, N.; Soltanian Fard, M. J.; Hayati, P.; Janczak, J.; Yazdian, F. Green approach for fabrication of a novel Zn(II) supramolecular compound as new precursor to produce nano-sized Zinc(II) oxide: Crystallography, topology, Hirshfeld Surface Analysis and biological activities. J. Mol. Struct. 2020, 1208, 127885.
https://doi.org/10.1016/j.molstruc.2020.127885

[3]. Aghaee, M.; Mohammadi, K.; Hayati, P.; Ahmadi, S.; Yazdian, F.; Gutierrez, A.; Rouhani, S.; Msagati, T. A. M. Morphology design and control of a novel 3D potassium metal-organic coordination polymer compound: Crystallography, DFT, thermal, and biological studies. J. Mol. Struct. 2021, 1228, 129434.
https://doi.org/10.1016/j.molstruc.2020.129434

[4]. Souri, B.; Reza Rezvani, A.; Abbasi, S.; Hayati, P.; Centore, R. An investigation on the morphology of a new coordination polymer via change effective factors based on eco-friendly sonochemical synthesis; new precursor for the preparation of cadmium(II) oxide. Inorganica Chim. Acta 2019, 498, 119134.
https://doi.org/10.1016/j.ica.2019.119134

[5]. Fard, M. J. S.; Hayati, P.; Naraghi, H. S.; Tabeie, S. A. Synthesis and characterization of a new nano lead(II) 0-D coordination supramolecular compound: A precursor to produce pure phase nano-sized lead(II) oxide. Ultrason. Sonochem. 2017, 39, 129-136.
https://doi.org/10.1016/j.ultsonch.2017.04.023

[6]. Abedi, M.; Mahmoudi, G.; Hayati, P.; Machura, B.; Zubkov, F. I.; Mohammadi, K.; Bahrami, S.; Derikvandi, H.; Mehrabadi, Z.; Kirillov, A. M. A 3D heterometallic Ni(ii)/K(i) MOF with a rare rna topology: synthesis, structural features, and photocatalytic dye degradation modeling. New J Chem 2019, 43, 17457-17465.
https://doi.org/10.1039/C9NJ04382A

[7]. Giachi, G.; Pallecchi, P.; Romualdi, A.; Ribechini, E.; Lucejko, J. J.; Colombini, M. P.; Mariotti Lippi, M. Ingredients of a 2,000-y-old medicine revealed by chemical, mineralogical, and botanical investigations. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 1193-1196.
https://doi.org/10.1073/pnas.1216776110

[8]. Interrelations between essential metal ions and human diseases; Sigel, A.; Sigel, H.; Sigel, R. K. O., Eds.; Springer Netherlands: Dordrecht, 2013.

[9]. Prasad, A. S. Zinc in human health: Effect of zinc on immune cells. Mol. Med. 2008, 14, 353-357.
https://doi.org/10.2119/2008-00033.Prasad

[10]. Broadley, M. R.; White, P. J.; Hammond, J. P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol. 2007, 173, 677-702.
https://doi.org/10.1111/j.1469-8137.2007.01996.x

[11]. Sugarman, B. Zinc and infection. Clin. Infect. Dis. 1983, 5, 137-147.
https://doi.org/10.1093/clinids/5.1.137

[12]. Handbook of nutrition and food, second edition; Berdanier, C. D.; Dwyer, J. T.; Feldman, E. B., Eds.; 2nd ed.; CRC Press: Boca Raton, FL, 2007.

[13]. Hambidge, K. M.; Krebs, N. F. Zinc deficiency: A special Challenge1. J. Nutr. 2007, 137, 1101-1105.
https://doi.org/10.1093/jn/137.4.1101

[14]. Agren, M. S.; Franzen, L.; Chvapil, M. Effects on wound healing of zinc oxide in a hydrocolloid dressing. J. Am. Acad. Dermatol. 1993, 29, 221-227.
https://doi.org/10.1016/0190-9622(93)70172-P

[15]. Lansdown, A. B. G. Influence of zinc oxide in the closure of open skin wounds. Int. J. Cosmet. Sci. 1993, 15, 83-85.
https://doi.org/10.1111/j.1467-2494.1993.tb00072.x

[16]. Stromberg, H.-E.; Agren, M. S. Topical zinc oxide treatment improves arterial and venous leg ulcers. Br. J. Dermatol. 1984, 111, 461-468.
https://doi.org/10.1111/j.1365-2133.1984.tb06610.x

[17]. Abendrot, M.; Chęcińska, L.; Kusz, J.; Lisowska, K.; Zawadzka, K.; Felczak, A.; Kalinowska-Lis, U. Zinc(II) complexes with amino acids for potential use in dermatology: Synthesis, crystal structures, and antibacterial activity. Molecules 2020, 25, 951.
https://doi.org/10.3390/molecules25040951

[18]. Raducka, A.; Świątkowski, M.; Korona-Głowniak, I.; Kaproń, B.; Plech, T.; Szczesio, M.; Gobis, K.; Szynkowska-Jóźwik, M. I.; Czylkowska, A. Zinc coordination compounds with benzimidazole derivatives: Synthesis, structure, antimicrobial activity and potential anticancer application. Int. J. Mol. Sci. 2022, 23, 6595.
https://doi.org/10.3390/ijms23126595

[19]. Hall, S. C.; Smith, D. R.; Dyavar, S. R.; Wyatt, T. A.; Samuelson, D. R.; Bailey, K. L.; Knoell, D. L. Critical role of Zinc transporter (ZIP8) in myeloid innate immune cell function and the host response against bacterial pneumonia. J. Immunol. 2021, 207, 1357-1370.
https://doi.org/10.4049/jimmunol.2001395

[20]. Manieri, T. M.; Sensi, S. L.; Squitti, R.; Cerchiaro, G. Structural effects of stabilization and complexation of a zinc-deficient superoxide dismutase. Heliyon 2021, 7, e06100.
https://doi.org/10.1016/j.heliyon.2021.e06100

[21]. Wąsowicz, W.; Kantorski, J.; Perek, D.; Popadiuk, S. Concentration of zinc and zinc-copper superoxide dismutase activity in red blood cells in normals and children with cancer. Clin. Chem. Lab. Med. 1989, 27, 413-418.
https://doi.org/10.1515/cclm.1989.27.7.413

[22]. Yashwantrao Patil, R.; More, H. N. Antioxidants with multivitamin and mineral supplementation attenuates chemotherapy or radiotherapy-induced oxidative stress in cancer patients. Ind. J. Pharm. Educ. 2020, 54, 484-490.
https://doi.org/10.5530/ijper.54.2.55

[23]. Stefanidou, M.; Maravelias, C.; Dona, A.; Spiliopoulou, C. Zinc: a multipurpose trace element. Arch. Toxicol. 2006, 80, 1-9.
https://doi.org/10.1007/s00204-005-0009-5

[24]. Jansen, J.; Karges, W.; Rink, L. Zinc and diabetes - clinical links and molecular mechanisms. J. Nutr. Biochem. 2009, 20, 399-417.
https://doi.org/10.1016/j.jnutbio.2009.01.009

[25]. Emami, S.; Hosseinimehr, S. J.; Taghdisi, S. M.; Akhlaghpoor, S. Kojic acid and its manganese and zinc complexes as potential radioprotective agents. Bioorg. Med. Chem. Lett. 2007, 17, 45-48.
https://doi.org/10.1016/j.bmcl.2006.09.097

[26]. Jiang, Z.; Shao, J.; Yang, T.; Wang, J.; Jia, L. Pharmaceutical development, composition and quantitative analysis of phthalocyanine as the photosensitizer for cancer photodynamic therapy. J. Pharm. Biomed. Anal. 2014, 87, 98-104.
https://doi.org/10.1016/j.jpba.2013.05.014

[27]. Nakayama, A.; Hiromura, M.; Adachi, Y.; Sakurai, H. Molecular mechanism of antidiabetic zinc-allixin complexes: regulations of glucose utilization and lipid metabolism. J. Biol. Inorg. Chem. 2008, 13, 675-684.
https://doi.org/10.1007/s00775-008-0352-0

[28]. Sakurai, H.; Yoshikawa, Y.; Yasui, H. Current state for the development of metallopharmaceutics and anti-diabetic metal complexes. Chem. Soc. Rev. 2008, 37, 2383-2392.
https://doi.org/10.1039/b710347f

[29]. d'Angelo, J.; Morgant, G.; Ghermani, N. E.; Desmaële, D.; Fraisse, B.; Bonhomme, F.; Dichi, E.; Sghaier, M.; Li, Y.; Journaux, Y.; Sorenson, J. R. J. Crystal structures and physico-chemical properties of Zn(II) and Co(II) tetraaqua(3-nitro-4-hydroxybenzoato) complexes: Their anticonvulsant activities as well as related (5-nitrosalicylato)-metal complexes. Polyhedron 2008, 27, 537-546.
https://doi.org/10.1016/j.poly.2007.10.006

[30]. Zhou, Q.; Hambley, T. W.; Kennedy, B. J.; Lay, P. A.; Turner, P.; Warwick, B.; Biffin, J. R.; Regtop, H. L. Syntheses and characterization of anti-inflammatory dinuclear and mononuclear zinc indomethacin complexes. Crystal structures of [Zn2(indomethacin)4(L)2] (L = N,N-dimethylacetamide, pyridine, 1-methyl-2-pyrrolidinone) and [Zn(indomethacin)2(L1)2] (L1 = ethanol, methanol). Inorg. Chem. 2000, 39, 3742-3748.
https://doi.org/10.1021/ic991477i

[31]. Kasuga, N. C.; Sekino, K.; Ishikawa, M.; Honda, A.; Yokoyama, M.; Nakano, S.; Shimada, N.; Koumo, C.; Nomiya, K. Synthesis, structural characterization and antimicrobial activities of 12 zinc(II) complexes with four thiosemicarbazone and two semicarbazone ligands. J. Inorg. Biochem. 2003, 96, 298-310.
https://doi.org/10.1016/S0162-0134(03)00156-9

[32]. Li, Z.-Q.; Wu, F.-J.; Gong, Y.; Hu, C.-W.; Zhang, Y.-H.; Gan, M.-Y. Synthesis, characterization and activity against staphylococcus of metal(II)‐gatifloxacin complexes. Chin. J. Chem. 2007, 25, 1809-1814.
https://doi.org/10.1002/cjoc.200790334

[33]. Chen, Z.-F.; Xiong, R.-G.; Zhang, J.; Chen, X.-T.; Xue, Z.-L.; You, X.-Z. 2D molecular square grid with strong blue fluorescent emission: A complex of norfloxacin with zinc(II). Inorg. Chem. 2001, 40, 4075-4077.
https://doi.org/10.1021/ic001470x

[34]. Yernale, N. G.; Udayagiri, M. D.; Mruthyunjayaswam, B. H. M. Synthesis, characterization, mass spectral fragmentation, thermal study and biological evaluation of new Schiff base ligand and its metal(II) complexes derived from 4-(diethylamino)salicylaldehyde and thiazole moiety. Eur. J. Chem. 2016, 7, 56-65.
https://doi.org/10.5155/eurjchem.7.1.56-65.1372

[35]. Dongare, G. M.; Aswar, A. S. A heterocyclic N'-(4-(diethylamino)-2-hydroxybenzylidene)-4-oxopiperidine-1-carbohydrazide Schiff base ligand and its metal complexes: Synthesis, structural characterization, thermal behavior, fluorescence properties, and biological activities. Eur. J. Chem. 2022, 13, 415-425.
https://doi.org/10.5155/eurjchem.13.4.415-425.2337

[36]. Seda, S. H.; Abdel Aziz, A. A. Synthesis, spectral characterization, antimicrobial, DNA binding and antioxidant studies of Co(II), Ni(II), Cu(II) and Zn(II) metal complexes of novel thiosalen analog N2S2. Eur. J. Chem. 2015, 6, 189-198.
https://doi.org/10.5155/eurjchem.6.2.189-198.1244

[37]. Shaikh, I.; Vohra, A.; Devkar, R.; Jadeja, R. Synthesis, characterization, structural features and cytotoxicity of innovative zinc(II) complex derived from ONS-donor thio-Schiff base of acyl pyrazolone. Eur. J. Chem. 2019, 10, 131-138.
https://doi.org/10.5155/eurjchem.10.2.131-138.1858

[38]. El-Henawy, A. A.; Hanafy, A. I. Synthesis, characterization, DNA-binding and biological activity of Zn(II) complexes of sulfadiazine with different amino acids. Eur. J. Chem. 2015, 6, 117-126.
https://doi.org/10.5155/eurjchem.6.2.117-126.1172

[39]. Tarushi, A.; Karaflou, Z.; Kljun, J.; Turel, I.; Psomas, G.; Papadopoulos, A. N.; Kessissoglou, D. P. Antioxidant capacity and DNA-interaction studies of zinc complexes with a non-steroidal anti-inflammatory drug, mefenamic acid. J. Inorg. Biochem. 2013, 128, 85-96.
https://doi.org/10.1016/j.jinorgbio.2013.07.013

[40]. Kovala-Demertzi, D.; Yadav, P. N.; Wiecek, J.; Skoulika, S.; Varadinova, T.; Demertzis, M. A. Zinc(II) complexes derived from pyridine-2-carbaldehyde thiosemicarbazone and (1E)-1-pyridin-2-ylethan-1-one thiosemicarbazone. Synthesis, crystal structures and antiproliferative activity of zinc(II) complexes. J. Inorg. Biochem. 2006, 100, 1558-1567.
https://doi.org/10.1016/j.jinorgbio.2006.05.006

[41]. Belicchi Ferrari, M.; Bisceglie, F.; Pelosi, G.; Tarasconi, P.; Albertini, R.; Pinelli, S. New methyl pyruvate thiosemicarbazones and their copper and zinc complexes: synthesis, characterization, X-ray structures and biological activity. J. Inorg. Biochem. 2001, 87, 137-147.
https://doi.org/10.1016/S0162-0134(01)00321-X

[42]. Di Vaira, M.; Bazzicalupi, C.; Orioli, P.; Messori, L.; Bruni, B.; Zatta, P. Clioquinol, a drug for Alzheimer's disease specifically interfering with brain metal metabolism: Structural characterization of its zinc(II) and copper(II) complexes. Inorg. Chem. 2004, 43, 3795-3797.
https://doi.org/10.1021/ic0494051

[43]. Gupta, S. P. Hydroxamic acids: A unique family of chemicals with multiple biological activities; Springer Science & Business Media, 2013.
https://doi.org/10.1007/978-3-642-38111-9

[44]. Sow, I. S.; Gelbcke, M.; Dufrasne, F.; Robeyns, K. Crystal structures of a series of hydroxamic acids. Molbank 2023, 2023, M1637.
https://doi.org/10.3390/M1637

[45]. Fazary, A. E.; Khalil, M. M.; Fahmy, A.; Tantawy, A. The Role of Hydroxamic Acids in Biochemical Processes. Med J Islamic World Acad Sci 2001, 14, 109-116 https://jag.journalagent.com/z4/download_fulltext.asp?pdir=ias&plng=eng&un=IAS-97759.

[46]. Raymond, K. Biomimetic metal encapsulation. Coord. Chem. Rev. 1990, 105, 135-153.
https://doi.org/10.1016/0010-8545(90)80020-T

[47]. Sharma, N.; Kumari, M.; Kumar, V.; Chaudhry, S. C.; Kanwar, S. S. Synthesis, characterization, and antimicrobial activity of oxovanadium(IV)hydroxamate complexes. J. Coord. Chem. 2010, 63, 1940-1950.
https://doi.org/10.1080/00958972.2010.495986

[48]. Farkas, E.; Enyedy, É. A.; Zékány, L.; Deák, G. Interaction between iron(II) and hydroxamic acids: oxidation of iron(II) to iron(III) by desferrioxamine B under anaerobic conditions. J. Inorg. Biochem. 2001, 83, 107-114.
https://doi.org/10.1016/S0162-0134(00)00197-5

[49]. Alagta, A.; Felhősi, I.; Kálmán, E. Hydroxamic acid corrosion inhibitor for steel in aqueous solution. Mater. Sci. For. 2007, 537-538, 81-88.
https://doi.org/10.4028/www.scientific.net/MSF.537-538.81

[50]. Codd, R. Traversing the coordination chemistry and chemical biology of hydroxamic acids. Coord. Chem. Rev. 2008, 252, 1387-1408.
https://doi.org/10.1016/j.ccr.2007.08.001

[51]. Benini, S.; Rypniewski, W. R.; Wilson, K. S.; Miletti, S.; Ciurli, S.; Mangani, S. The complex of Bacillus pasteurii urease with acetohydroxamate anion from X-ray data at 1.55 Å resolution. J. Biol. Inorg. Chem. 2000, 5, 110-118.
https://doi.org/10.1007/s007750050014

[52]. Scolnick, L. R.; Clements, A. M.; Liao, J.; Crenshaw, L.; Hellberg, M.; May, J.; Dean, T. R.; Christianson, D. W. Novel binding mode of hydroxamate inhibitors to human carbonic anhydrase II. J. Am. Chem. Soc. 1997, 119, 850-851.
https://doi.org/10.1021/ja963832z

[53]. Kumar, A.; Priya, B.; Thakur, A.; Sharma, N. in vitro cytotoxicity and DNA binding studies of newly synthesized oxidovanadium (IV) complexes of Nitro-substituted benzohydroxamate ligands as prospective vanadodrug compounds. Adv. Sci. Eng. Med. 2018, 10, 27-37.
https://doi.org/10.1166/asem.2018.2095

[54]. Choudhary, V. K.; Bhatt, A. K.; Sharma, N. Theoretical and spectroscopic evidence on a new triphenyltin(IV) 3,5-dinitrosalicylhydroxamate complex: synthesis, structural characterization, and biological screening. J. Coord. Chem. 2020, 73, 947-968.
https://doi.org/10.1080/00958972.2020.1747055

[55]. Sharma, S.; Sharma, N.; Kumari, M.; Thakur, M. Synthesis, characterization and evaluation of antimicrobial potential of zinc(II) complexes of nitro-substituted hydroxamic acid chelators. J. Coord. Chem. 2022, 75, 1289-1302.
https://doi.org/10.1080/00958972.2022.2111259

[56]. Farkas, E.; Enyedy, É. A.; Csóka, H. A comparison between the chelating properties of some dihydroxamic acids, desferrioxamine B and acetohydroxamic acid. Polyhedron 1999, 18, 2391-2398.
https://doi.org/10.1016/S0277-5387(99)00144-8

[57]. Syed, Z.; Sonu, K.; Dongre, A.; Sharma, G.; Sogani, M. A review on Hydroxamic Acids: Widespectrum Chemotherapeutic Agents. Int. J. Biol. Biomed. Eng. 2020, 14, 75-88.
https://doi.org/10.46300/91011.2020.14.12

[58]. Vogel, A. I.; Jeffery, G. H. Vogel's textbook of quantitative chemical analysis; Longman Scientific and Technical, 1989.

[59]. Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108.
https://doi.org/10.1063/5.0004608

[60]. Zhurko, G. A.; Zhurko, D. A. Chemcraft - Graphical program for visualization of quantum chemistry computations. http://www.chemcraftprog.com (accessed Jan 5, 2024).

[61]. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera-A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605-1612.
https://doi.org/10.1002/jcc.20084

[62]. Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785-2791.
https://doi.org/10.1002/jcc.21256

[63]. Biovia, D. S.; Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Richmond, T. J., 2000. Dassault systemes BIOVIA, Discovery studio visualizer, v. 17.2, San Diego: Dassault Systemes, 2016.

[64]. Hauser, C. R.; Renfrow Jr., W. B. Benzohydroxamic acid. Organic Synth. Coll. Vol. 2. A.H. Blatt (Ed.), John Wiley and Sons, New York. 1939, 19, 15.
https://doi.org/10.1002/0471264180.os019.06

[65]. Choudhary, V. K.; Kumar, A.; Sharma, N. Potential bioactive mononuclear diorganotin(IV) phenoxyacetohydroxamate complexes: synthesis, characterization and antimicrobial evaluation. Main Group Met. Chem. 2018, 41 (1,2), 27-32 https://doi.org/10.1515/mgmc-2017-0056.
https://doi.org/10.1515/mgmc-2017-0056

[66]. Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648-5652.
https://doi.org/10.1063/1.464913

[67]. Schäfer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571-2577.
https://doi.org/10.1063/1.463096

[68]. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003, 9, ix-xv https://doi.org/10.1046/j.1469-0691.2003.00790.x.
https://doi.org/10.1046/j.1469-0691.2003.00790.x

[69]. Sarker, S. D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321-324.
https://doi.org/10.1016/j.ymeth.2007.01.006

[70]. Wayne, P.A. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard In: CLSI Document M07-A9 (9th ed). Clinical and Laboratory Standards Institute; 2012.

[71]. Rashidi, N.; Fard, M. J. S.; Hayati, P.; Janczak, J.; Yazdian, F.; Rouhani, S.; Msagati, T. A. M. Antibacterial and cytotoxicity assay of two new Zn(ii)complexes: Synthesis, characterization, X-Ray structure, topology, Hirshfeld surface and thermal analysis. J. Mol. Struct. 2021, 1231, 129947.
https://doi.org/10.1016/j.molstruc.2021.129947

[72]. Hinson, A. R. P.; Jones, R.; Crose, L. E. S.; Belyea, B. C.; Barr, F. G.; Linardic, C. M. Human rhabdomyosarcoma cell lines for rhabdomyosarcoma research: Utility and pitfalls. Front. Oncol. 2013, 3, 183.
https://doi.org/10.3389/fonc.2013.00183

[73]. Chruszcz, M.; Chapman, M. D.; Osinski, T.; Solberg, R.; Demas, M.; Porebski, P. J.; Majorek, K. A.; Pomés, A.; Minor, W. Alternaria alternata allergen Alt a 1: A unique β-barrel protein dimer found exclusively in fungi. J. Allergy Clin. Immunol. 2012, 130, 241-247.e9.
https://doi.org/10.1016/j.jaci.2012.03.047

[74]. Schrödinger, L.; DeLano, W. PyMOL, 2020, http://www.pymol.org/pymol.

[75]. Mohapatra, R. K.; El-ajaily, M. M.; Alassbaly, F. S.; Sarangi, A. K.; Das, D.; Maihub, A. A.; Ben-Gweirif, S. F.; Mahal, A.; Suleiman, M.; Perekhoda, L.; Azam, M.; Al-Noor, T. H. DFT, anticancer, antioxidant and molecular docking investigations of some ternary Ni(II) complexes with 2-[(E)-[4-(dimethylamino)phenyl]methyleneamino]phenol. Chem. Pap. 2021, 75, 1005-1019.
https://doi.org/10.1007/s11696-020-01342-8

[76]. Geary, W. J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 1971, 7, 81-122.
https://doi.org/10.1016/S0010-8545(00)80009-0

[77]. AbouEl-Enein, S. A.; El-Saied, F. A.; Kasher, T. I.; El-Wardany, A. H. Synthesis and characterization of iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes of salicylidene-N-anilinoacetohydrazone (H2L1) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H2L2). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 67, 737-743.
https://doi.org/10.1016/j.saa.2006.07.052

[78]. Matijevic-Sosa, J.; Vinkovic, M.; Vikic-Topic, D. NMR spectroscopy of 2-hydroxy-1-naphthylidene Schiff bases with chloro and hydroxy substituted aniline moiety. 2006, 79 (3), 489-495 https://hrcak.srce.hr/5662.

[79]. Kohn, W.; Becke, A. D.; Parr, R. G. Density functional theory of electronic structure. J. Phys. Chem. 1996, 100, 12974-12980.
https://doi.org/10.1021/jp960669l

[80]. Abdel-Latif, S. A.; Mohamed, A. A. Synthesis, spectroscopic characterization, first order nonlinear optical properties and DFT calculations of novel Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with 1,3-diphenyl-4-phenylazo-5-pyrazolone ligand. J. Mol. Struct. 2018, 1153, 248-261.
https://doi.org/10.1016/j.molstruc.2017.10.002

[81]. Chandrasekar, T.; Arunadevi, A.; Raman, N. Synthesis, spectral characterization, DNA-binding and antimicrobial profile of biological active mixed ligand Schiff base metal(II) complexes incorporating 1,8-diaminonaphthalene. J. Coord. Chem. 2021, 74, 804-822.
https://doi.org/10.1080/00958972.2020.1870967

[82]. Zia-ur-Rehman; Muhammad, N.; Shuja, S.; Ali, S.; Butler, I. S.; Meetsma, A.; Khan, M. New dimeric, trimeric and supramolecular organotin(IV) dithiocarboxylates: Synthesis, structural characterization and biocidal activities. Polyhedron 2009, 28, 3439-3448.
https://doi.org/10.1016/j.poly.2009.07.025

[83]. Sultan, J. S.; Lateaf, S. M.; Rashid, D. K. Synthesis, characterization and antibacterial activity of mixed ligand (HL) complexes Mn(ll), co(ll), Ni(ll), Zn(ll), Cd(ll) and Hg(ll) with azide (N3-). Open J. Inorg. Chem. 2015, 05, 102-111.
https://doi.org/10.4236/ojic.2015.54011

[84]. Shujah, S.; Zia-ur-Rehman; Muhammad, N.; Shah, A.; Ali, S.; Meetsma, A.; Hussain, Z. Homobimetallic organotin(IV) complexes with hexadentate Schiff base: Synthesis, crystal structure and antimicrobial studies. J. Organomet. Chem. 2014, 759, 19-26.
https://doi.org/10.1016/j.jorganchem.2014.02.010

[85]. Sahraei, A.; Kargar, H.; Hakimi, M.; Tahir, M. N. Synthesis, characterization, crystal structures and biological activities of eight-coordinate zirconium(IV) Schiff base complexes. Transit. Met. Chem. 2017, 42, 483-489.
https://doi.org/10.1007/s11243-017-0152-x

[86]. Eslami Moghadam, M.; Hasanzadeh Esfahani, M.; Behzad, M.; Zolghadri, S.; Ramezani, N.; Azadi, Y. New platinum (II) complexes based on schiff bases: synthesis, specification, X-ray structure, ADMET, DFT, molecular docking, and anticancer activity against breast cancer. J. Biol. Inorg. Chem. 2023, 28, 519-529.
https://doi.org/10.1007/s00775-023-02005-1

Supporting Agencies

Department of Chemistry, Faculty of Physical Sciences, University of Himachal Pradesh, Shimla-171005, India
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).