European Journal of Chemistry

Antioxidant and anti-inflammatory potentials of the leaf extracts of Calotropis procera and Enantia chlorantha

Crossmark


Main Article Content

Oluwasayo Esther Ogunjinmi
Peter Ifeoluwa Adegbola
Johnson Oladimeji Odedele
Ganiyat Adeyinka Adedokun

Abstract

Inflammation and oxidative stress are involved in the aetiology of numerous human diseases. The two processes are interconnected such that one may appear before or after the other, but as soon as one of them appears, the other will. Consequently, targeting the two conditions may aid in the prevention or treatment of associated human diseases, and plants capable of performing the two functions together are of great advantage. This study was aimed at evaluating the antioxidant and anti-inflammatory potentials of methanol and aqueous extracts of Calotropis procera and Enantia chlorantha. The leaves of the two plants were extracted separately in water and methanol using a cold maceration method. Antioxidant activity was evaluated using the Lipid peroxidation (LPO), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP), while the anti-inflammatory properties were evaluated using membrane stabilization and inhibition of protein denaturation assays. Qualitative phytochemical analysis was performed using standard methods. The results of the study showed that the aqueous extract of the two plants demonstrated better antioxidant activity than the methanol extracts. IC50 values of 61.60, 59.12, and 83.07 µg/mL were, respectively, for ascorbic acid, aqueous extracts of E. chlorantha and C. procera, while the methanol extracts of both plants recorded a value >150 µg/mL for DPPH. For LPO inhibition, the IC50 values were 191.79 µg/mL, >150 µg/mL for the aqueous, methanol extracts of C. procera and 228.25 µg/mL, 135.46 µg/mL for ascorbic acid and quercetin used as standards. The aqueous extract of E. chlorantha had a value of 161.95 µg/mL and the methanol extracts had a value >250 µg/mL. For the two anti-inflammatory methods used, the IC50 values for the plant were >250 µg/mL. Phytochemicals such as tannins, flavonoids, alkaloids, terpenoids, and phenols were identified in both plant samples. Overall, the results demonstrated the potential of the plant when used for the treatment of diseases related to inflammatory and oxidative stress.


icon graph This Abstract was viewed 11 times | icon graph Article PDF downloaded 1 times

How to Cite
(1)
Ogunjinmi, O. E.; Adegbola, P. I.; Odedele, J. O.; Adedokun, G. A. Antioxidant and Anti-Inflammatory Potentials of the Leaf Extracts of Calotropis Procera and Enantia Chlorantha. Eur. J. Chem. 2024, 15, 220-225.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204-7218.
https://doi.org/10.18632/oncotarget.23208

[2]. Tahiri, S.; Fulgence, M. K.; Kouame, D. B. Phytochemical analysis, investigation of antioxidant and anti-inflammatory activities of ethanolic and aqueous extracts of roots of Combretum glutinosum Perr. ex DC from Cote d'Ivoire. Eur. J. Chem. 2022, 13, 478-482.
https://doi.org/10.5155/eurjchem.13.4.478-482.2352

[3]. Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 2017, 1-13.
https://doi.org/10.1155/2017/8416763

[4]. Reuter, S.; Gupta, S. C.; Chaturvedi, M. M.; Aggarwal, B. B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603-1616.
https://doi.org/10.1016/j.freeradbiomed.2010.09.006

[5]. Flohé, L.; Brigelius-Flohé, R.; Saliou, C.; Traber, M. G.; Packer, L. Redox regulation of NF-kappa B activation. Free Radic. Biol. Med. 1997, 22, 1115-1126.
https://doi.org/10.1016/S0891-5849(96)00501-1

[6]. Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D. W.; Fasano, A.; Miller, G. W.; Miller, A. H.; Mantovani, A.; Weyand, C. M.; Barzilai, N.; Goronzy, J. J.; Rando, T. A.; Effros, R. B.; Lucia, A.; Kleinstreuer, N.; Slavich, G. M. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822-1832.
https://doi.org/10.1038/s41591-019-0675-0

[7]. Mittal, M.; Siddiqui, M. R.; Tran, K.; Reddy, S. P.; Malik, A. B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126-1167.
https://doi.org/10.1089/ars.2012.5149

[8]. Ranneh, Y.; Ali, F.; Akim, A. M.; Hamid, H. A.; Khazaai, H.; Fadel, A. Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review. Appl. Biol. Chem. 2017, 60, 327-338.
https://doi.org/10.1007/s13765-017-0285-9

[9]. Netea, M. G.; Balkwill, F.; Chonchol, M.; Cominelli, F.; Donath, M. Y.; Giamarellos-Bourboulis, E. J.; Golenbock, D.; Gresnigt, M. S.; Heneka, M. T.; Hoffman, H. M.; Hotchkiss, R.; Joosten, L. A. B.; Kastner, D. L.; Korte, M.; Latz, E.; Libby, P.; Mandrup-Poulsen, T.; Mantovani, A.; Mills, K. H. G.; Nowak, K. L.; O'Neill, L. A.; Pickkers, P.; van der Poll, T.; Ridker, P. M.; Schalkwijk, J.; Schwartz, D. A.; Siegmund, B.; Steer, C. J.; Tilg, H.; van der Meer, J. W. M.; van de Veerdonk, F. L.; Dinarello, C. A. A guiding map for inflammation. Nat. Immunol. 2017, 18, 826-831.
https://doi.org/10.1038/ni.3790

[10]. Kotas, M. E.; Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 2015, 160, 816-827.
https://doi.org/10.1016/j.cell.2015.02.010

[11]. Straub, R. H. The brain and immune system prompt energy shortage in chronic inflammation and ageing. Nat. Rev. Rheumatol. 2017, 13, 743-751.
https://doi.org/10.1038/nrrheum.2017.172

[12]. Calder, P. C.; Ahluwalia, N.; Albers, R.; Bosco, N.; Bourdet-Sicard, R.; Haller, D.; Holgate, S. T.; Jönsson, L. S.; Latulippe, M. E.; Marcos, A.; Moreines, J.; M'Rini, C.; Müller, M.; Pawelec, G.; van Neerven, R. J. J.; Watzl, B.; Zhao, J. A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br. J. Nutr. 2013, 109, S1-S34.
https://doi.org/10.1017/S0007114512005119

[13]. Zaric, B. L.; Macvanin, M. T.; Isenovic, E. R. Free radicals: Relationship to Human Diseases and Potential Therapeutic applications. Int. J. Biochem. Cell Biol. 2023, 154, 106346.
https://doi.org/10.1016/j.biocel.2022.106346

[14]. Checa, J.; Aran, J. M. Reactive oxygen species: Drivers of physiological and pathological processes. J. Inflamm. Res. 2020, 13, 1057-1073.
https://doi.org/10.2147/JIR.S275595

[15]. Adegbola, P.; Aderibigbe, I.; Hammed, W.; Omotayo, T. Antioxidant and anti-inflammatory medicinal plants have potential role in the treatment of cardiovascular disease: a review. Am. J. Cardiovasc. Dis. 2017, 7, 19-32. https://e-century.us/files/ajcd/7/2/ ajcd0052289.pdf

[16]. Sies, H.; Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363-383.
https://doi.org/10.1038/s41580-020-0230-3

[17]. Nunes, C. dos R.; Barreto Arantes, M.; Menezes de Faria Pereira, S.; Leandro da Cruz, L.; de Souza Passos, M.; Pereira de Moraes, L.; Vieira, I. J. C.; Barros de Oliveira, D. Plants as sources of anti-inflammatory agents. Molecules 2020, 25, 3726.
https://doi.org/10.3390/molecules25163726

[18]. Cheng, H.-L.; Zhang, L.-J.; Liang, Y.-H.; Hsu, Y.-W.; Lee, I.-J.; Liaw, C.-C.; Hwang, S.-Y.; Kuo, Y.-H. Antiinflammatory and antioxidant flavonoids and phenols from Cardiospermum halicacabum (dào Dì líng). J. Tradit. Complement. Med. 2013, 3, 33-40.
https://doi.org/10.1016/S2225-4110(16)30165-1

[19]. Malik, J.; Tauchen, J.; Landa, P.; Kutil, Z.; Marsik, P.; Kloucek, P.; Havlik, J.; Kokoska, L. In vitro antiinflammatory and antioxidant potential of root extracts from Ranunculaceae species. S. Afr. J. Bot. 2017, 109, 128-137.
https://doi.org/10.1016/j.sajb.2016.12.008

[20]. Kamatou, G. P. P.; Viljoen, A. M.; Steenkamp, P. Antioxidant, antiinflammatory activities and HPLC analysis of South African Salvia species. Food Chem. 2010, 119, 684-688.
https://doi.org/10.1016/j.foodchem.2009.07.010

[21]. Widowati, W.; Prahastuti, S.; Hidayat, M.; Hasianna, S. T.; Wahyudianingsih, R.; The Fransiska Eltania; Azizah, A. M.; Aviani, J. K.; Subangkit, M.; Handayani, R. A. S.; Kusuma, H. S. W. Detam 1 black soybean against cisplatin-induced acute ren failure on rat model via antioxidant, antiinflammatory and antiapoptosis potential. J. Tradit. Complement. Med. 2022, 12, 426-435.
https://doi.org/10.1016/j.jtcme.2022.01.004

[22]. Hobani, Y. H.; Mohan, S.; Shaheen, E.; Abdelhaleem, A.; Faruque Ahmad, M.; Bhatia, S.; Abou-Elhamd, A. S. Gastroprotective effect of low dose Eugenol in experimental rats against ethanol induced toxicity: Involvement of antiinflammatory and antioxidant mechanism. J. Ethnopharmacol. 2022, 289, 115055.
https://doi.org/10.1016/j.jep.2022.115055

[23]. Murti, Y.; Yogi, B.; Pathak, D. Pharmacognostic standardization of leaves of Calotropis procera (Ait.) R. Br. (Asclepiadaceae). Int. J. Ayurveda Res. 2010, 1, 14.
https://doi.org/10.4103/0974-7788.59938

[24]. Lorenzi, H.; de Abreu Matos, F. J. Plantas medicinais no Brasil: nativas e exóticas; 2002.

[25]. Useful plants of west tropical Africa volume 2, the: Families E-I; Burkill, H. M., Ed.; 2nd ed.; Kew Publishing: Richmond, England, 1994.

[26]. Rahman, M. A.; Wilcock, C. C. A taxonomic revision of Calotropis (Asclepiadaceae). Nord. J. Bot. 1991, 11, 301-308.
https://doi.org/10.1111/j.1756-1051.1991.tb01408.x

[27]. Silva, M. C. C.; da Silva, A. B.; Teixeira, F. M.; de Sousa, P. C. P.; Rondon, R. M. M.; Honório, J. E. R., Júnior; Sampaio, L. R. L.; Oliveira, S. L.; Holonda, A. N. M.; de Vasconcelos, S. M. M. Therapeutic and biological activities of Calotropis procera (Ait.) R. Br. Asian Pac. J. Trop. Med. 2010, 3, 332-336.
https://doi.org/10.1016/S1995-7645(10)60081-8

[28]. Magalhães, H. I. F.; Ferreira, P. M. P.; Moura, E. S.; Torres, M. R.; Alves, A. P. N. N.; Pessoa, O. D. L.; Costa-Lotufo, L. V.; Moraes, M. O.; Pessoa, C. In vitro and in vivo antiproliferative activity of Calotropis procera stem extracts. An. Acad. Bras. Cienc. 2010, 82, 407-416.
https://doi.org/10.1590/S0001-37652010000200017

[29]. Ahmad Nejhad, A.; Alizadeh Behbahani, B.; Hojjati, M.; Vasiee, A.; Mehrnia, M. A. Identification of phytochemical, antioxidant, anticancer and antimicrobial potential of Calotropis procera leaf aqueous extract. Sci. Rep. 2023, 13, 14716.
https://doi.org/10.1038/s41598-023-42086-1

[30]. Akinwale, S. G.; Chukwu, O. E.; Chioma, O. P.; Chukudi, A. J.; Olubunmi, A. G. Enantia chlorantha: A review. J. Pharmacogn. Phytochem. 2022, 11, 34-38.
https://doi.org/10.22271/phyto.2022.v11.i3a.14406

[31]. Agbaje, E. O.; Tijani, A. Y.; Braimoh, O. O. Effects of Enantia chlorantha extracts in Laboratory-Induced Convulsion and Inflammation. Orient J. Med. 2004, 15, 67-71.
https://doi.org/10.4314/ojm.v15i1.29050

[32]. Siminialayi, I. M.; Agbaje, E. O. Gastroprotective effects of the ethanolic extract of Enantia chlorantha in rats. West Afr. J. Pharmacol. Drug Res. 2005, 20, 35-38.
https://doi.org/10.4314/wajpdr.v20i1.14743

[33]. Tsabang, N.; Fokou, P. V. T.; Tchokouaha, L. R. Y.; Noguem, B.; Bakarnga-Via, I.; Nguepi, M. S. D.; Nkongmeneck, B. A.; Boyom, F. F. Ethnopharmacological survey of Annonaceae medicinal plants used to treat malaria in four areas of Cameroon. J. Ethnopharmacol. 2012, 139, 171-180.
https://doi.org/10.1016/j.jep.2011.10.035

[34]. Namadina, M. M.; Suleiman, J.; Zakari, S. A.; Abubakar, F. B.; Sale, A. I. Phytochemical, analgesic, antioxidant and antimicrobial activities of Calotropis procera (apple of Sodom) leaves. Dutse Journal of Pure and Applied Sciences (DUJOPAS) 2023, 9, 232-243.
https://doi.org/10.4314/dujopas.v9i2a.23

[35]. Olanlokun, J. O.; Akomolafe, S. F. Antioxidant potentials of various solvent extracts from stem bark of Enantia chlorantha. J. Biomed. Sci. Eng. 2013, 06, 877-884.
https://doi.org/10.4236/jbise.2013.69107

[36]. Olasunkanmi, A. A.; Fadahunsi, O. S.; Adegbola, P. I. Gas Chromatography-Mass Spectroscopic, high performance liquid chromatographic and In-silico characterization of antimicrobial and antioxidant constituents of Rhus longipes(Engl). Arab. J. Chem. 2022, 15, 103601.
https://doi.org/10.1016/j.arabjc.2021.103601

[37]. Rajurkar, N.; Hande, S. M. Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian J. Pharm. Sci. 2011, 73, 146-151.
https://doi.org/10.4103/0250-474X.91574

[38]. Benzie, I. F. F.; Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal. Biochem. 1996, 239, 70-76.
https://doi.org/10.1006/abio.1996.0292

[39]. Habu, J. B.; Ibeh, B. O. In vitro antioxidant capacity and free radical scavenging evaluation of active metabolite constituents of Newbouldia laevis ethanolic leaf extract. Biol. Res. 2015, 48.
https://doi.org/10.1186/s40659-015-0007-x

[40]. Sadique, J.; Al Rqobah, W. A.; Bughaith, M. F.; El Gindy, A. R. The bio activity of certain medicinal plants on the stabilization of rbc membrane system. Fitoterapia 1989, 60, 525-532. https://eurekamag.com/research/007/874/007874826.php

[41]. Sakat, S.; Tupe, P.; Juvekar, A. Gastroprotective effect of methanol extract of Oxalis corniculata Linn (whole plant) experimental animals. Planta Med. 2010, 76.
https://doi.org/10.1055/s-0030-1264388

[42]. Mizushima, Y.; Kobayashi, M. Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. J. Pharm. Pharmacol. 2011, 20, 169-173.
https://doi.org/10.1111/j.2042-7158.1968.tb09718.x

[43]. Adegbola, P. I.; Adetutu, A.; Olaniyi, T. D. Antioxidant activity of Amaranthus species from the Amaranthaceae family - A review. S. Afr. J. Bot. 2020, 133, 111-117.
https://doi.org/10.1016/j.sajb.2020.07.003

[44]. Amarowicz, R.; Pegg, R. B.; Rahimi-Moghaddam, P.; Barl, B.; Weil, J. A. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem. 2004, 84, 551-562.
https://doi.org/10.1016/S0308-8146(03)00278-4

[45]. Gairola, K.; Gururani, S.; Kumar, R.; Prakash, O.; Agrawal, S.; Dubey, S. K. Composition, Antioxidant and Anti-inflammatory activities of Hexane and Methanol extracts of Acmella uliginosa from Terai region of Uttarakhand. Braz. J. Pharm. Sci. 2022, 58.
https://doi.org/10.1590/s2175-97902022e20353

[46]. Joel, J. S.; Sheena, O. E.; Martins, O. E.; Onyemauche, N. S. C.; Emmanuel, A. A. Comparative antioxidant capacity of aqueous and ethanol fruit extracts of tetrapleura tetraptera. J. Biol. Sci. (Faisalabad) 2017, 17, 185-193.
https://doi.org/10.3923/jbs.2017.185.193

[47]. Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R. P.; Chang, C.-M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules 2022, 27, 1326.
https://doi.org/10.3390/molecules27041326

[48]. Chaves, N.; Santiago, A.; Alías, J. C. Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants (Basel) 2020, 9, 76.
https://doi.org/10.3390/antiox9010076

[49]. Chen, H.-Y. Why the reactive oxygen species of the Fenton reaction switches from oxoiron(IV) species to hydroxyl radical in phosphate buffer solutions? A computational rationale. ACS Omega 2019, 4, 14105-14113.
https://doi.org/10.1021/acsomega.9b02023

[50]. Juan, C. A.; Pérez de la Lastra, J. M.; Plou, F. J.; Pérez-Lebeña, E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int. J. Mol. Sci. 2021, 22, 4642.
https://doi.org/10.3390/ijms22094642

[51]. Berkoz, M.; Yalin, S.; Comelekoglu, U.; Bagis, S. Effect of calcitonin on lipid peroxidation in ovariectomized rats. Eur. J. Chem. 2010, 1, 44-46.
https://doi.org/10.5155/eurjchem.1.1.44-46.13

[52]. Sabir, S. M.; Abbas, S. R.; Shahida, S.; Khan, M. F. In-Vitro antioxidant, anti-lipid peroxidative activities and In-Silico study of Terminalia chebula bioactive compounds. Clin. Phytoscience 2020, 6, 83.
https://doi.org/10.1186/s40816-020-00233-5

[53]. Samuel, F. O.; Sinbad, O. O.; Olusoji, O. In-vitro Anti-inflammatory Activities of Extract of the Leaves of Sphenocentrum jollyanum Pierre. J. Appl. Life Sci. Int. 2018, 18, 1-9.
https://doi.org/10.9734/JALSI/2018/34251

[54]. Yesmin, S.; Paul, A.; Naz, T.; Rahman, A. B. M. A.; Akhter, S. F.; Wahed, M. I. I.; Emran, T. B.; Siddiqui, S. A. Membrane stabilization as a mechanism of the anti-inflammatory activity of ethanolic root extract of Choi (Piper chaba). Clin. Phytoscience 2020, 6, 59.
https://doi.org/10.1186/s40816-020-00207-7

[55]. Pečivová, J.; Mačičková, T.; Sviteková, K.; Nosáľ, R. Quercetin inhibits degranulation and superoxide generation in PMA stimulated neutrophils. Interdiscip. Toxicol. 2012, 5, 81-83.
https://doi.org/10.2478/v10102-012-0014-5

[56]. Osman, N.; Sidik, N.; Awal, A.; Adam, N.; Rezali, N. In vitro xanthine oxidase (XO) and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-inflammatory use in gouty arthritis. J. Intercult. Ethnopharmacol. 2016, 5, 343.
https://doi.org/10.5455/jice.20160731025522

[57]. Rackova, L.; Oblozinsky, M.; Kostalova, D.; Kettmann, V.; Bezakova, L. Free radical scavenging activity and lipoxygenase inhibition of Mahonia aquifolium extract and isoquinoline alkaloids. J. Inflamm. (Lond.) 2007, 4, 15.
https://doi.org/10.1186/1476-9255-4-15

[58]. Nenaah, G. Antimicrobial activity of Calotropis procera Ait. (Asclepiadaceae) and isolation of four flavonoid glycosides as the active constituents. World J. Microbiol. Biotechnol. 2013, 29, 1255-1262.
https://doi.org/10.1007/s11274-013-1288-2

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).