European Journal of Chemistry

Design and synthesis of new coumarin-1,2,3-triazole hybrids as new antidiabetic agents: In vitro α-amylase, α-glucosidase inhibition, anti-inflammatory, and docking study

Crossmark


Main Article Content

Vinayaka Chandrappa Barangi
Lokesh Anand Shastri
Prakasha Kothathi Chowdegowda
Rohini Sangappanavar
Karthik Inamdar
Nagarjuna Prakash Dalbanjan
Delicia Avilla Barretto
Vinay Sunagar

Abstract

The current study focuses on the synthesis of coumarin-triazole hybrids (7i-t) starting from 4-hydroxy benzaldehyde or 4-hydroxyacetophenone (1a-b) and propargyl bromide. On the other hand, coumarin derivatives (5c-h) were prepared by Pechmann cyclization and treated with sodium azide to give the corresponding 3-azido methyl coumarins (6c-h). Finally, 1,3-dipolar cycloaddition between compounds 6c-h and terminal alkyne 2a-b produces coumarin-triazole hybrids (7i-t) utilizing click chemistry approaches that are high yielding, wide in scope and simple to perform. The structural proofs of the newly synthesized coumarin-triazole hybrids (7i-t) are proved by various spectroscopic techniques, including IR, 1H NMR, 13C NMR, and LC-MS. The synthesized new coumarin triazole hybrids (7i-t) were explored for their antihyperglycemic potential and therefore evaluated for α-glucosidase and α-amylase inhibitory activities along with anti-inflammatory. The results suggest that among the series, compound 7l showed excellent activity with an IC50 value of 0.67±0.014 mg/mL and 0.72±0.012 mg/mL for α-amylase, and α-glucosidase inhibitory potential while compound 7o showed promising anti-inflammatory activity with IC50 value of 0.54±0.003 mg/mL. To support the above findings, molecular docking studies were performed, which confirmed the interaction of the synthesized molecules 7i-t with an effective binding energy of -9.0 to -10.6 kcal/mol at the active site of the enzyme human pancreatic α-amylase (PDB ID: 1B2Y). Therefore, these scaffolds have the potential to function as lead candidates for antidiabetic and anti-inflammatory activities.


icon graph This Abstract was viewed 700 times | icon graph Article PDF downloaded 266 times

How to Cite
(1)
Barangi, V. C.; Shastri, L. A.; Chowdegowda, P. K.; Sangappanavar, R.; Inamdar, K.; Dalbanjan, N. P.; Barretto, D. A.; Sunagar, V. Design and Synthesis of New Coumarin-1,2,3-Triazole Hybrids As New Antidiabetic Agents: In Vitro α-Amylase, α-Glucosidase Inhibition, Anti-Inflammatory, and Docking Study. Eur. J. Chem. 2024, 15, 205-219.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Soni, R.; Durgapal, S. D.; Soman, S. S.; Georrge, J. J. Design, synthesis and anti-diabetic activity of chromen-2-one derivatives. Arab. J. Chem. 2019, 12, 701-708.
https://doi.org/10.1016/j.arabjc.2016.11.011

[2]. Powell, H. C.; Mizisin, A. P. Diabetic neuropathy. In Encyclopedia of Neuroscience; Elsevier, 2009; pp. 511-516.
https://doi.org/10.1016/B978-008045046-9.00655-0

[3]. Kropp, M.; Golubnitschaja, O.; Mazurakova, A.; Koklesova, L.; Sargheini, N.; Vo, T.-T. K. S.; de Clerck, E.; Polivka, J., Jr; Potuznik, P.; Polivka, J.; Stetkarova, I.; Kubatka, P.; Thumann, G. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications-risks and mitigation. EPMA J. 2023, 14, 21-42.
https://doi.org/10.1007/s13167-023-00314-8

[4]. Said, G. Diabetic neuropathy. In Handbook of Clinical Neurology; Elsevier, 2013; pp. 579-589.
https://doi.org/10.1016/B978-0-444-52902-2.00033-3

[5]. Ranđelović, S.; Bipat, R. A review of coumarins and coumarin-related compounds for their potential antidiabetic effect. Clin. Med. Insights Endocrinol. Diabetes 2021, 14, 117955142110420.
https://doi.org/10.1177/11795514211042023

[6]. Li, H.; Yao, Y.; Li, L. Coumarins as potential antidiabetic agents. J. Pharm. Pharmacol. 2017, 69, 1253-1264.
https://doi.org/10.1111/jphp.12774

[7]. Pan, Y.; Liu, T.; Wang, X.; Sun, J. Research progress of coumarins and their derivatives in the treatment of diabetes. J. Enzyme Inhib. Med. Chem. 2022, 37, 616-628.
https://doi.org/10.1080/14756366.2021.2024526

[8]. Jadhav, P. B.; Jadhav, S. B.; Zehravi, M.; Mubarak, M. S.; Islam, F.; Jeandet, P.; Khan, S. L.; Hossain, N.; Rashid, S.; Ming, L. C.; Sarker, M. M. R.; Azlina, M. F. N. Virtual screening, synthesis, and biological evaluation of some carbohydrazide derivatives as potential DPP-IV inhibitors. Molecules 2022, 28, 149.
https://doi.org/10.3390/molecules28010149

[9]. Lon, H.-K.; Liu, D.; Jusko, W. J. Pharmacokinetic/pharmacodynamic modeling in inflammation. Crit. Rev. Biomed. Eng. 2012, 40, 295-312.
https://doi.org/10.1615/CritRevBiomedEng.v40.i4.50

[10]. Maritim, A. C.; Sanders, R. A.; Watkins, J. B., III Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 2003, 17, 24-38.
https://doi.org/10.1002/jbt.10058

[11]. Ferreira, S. H.; Vane, J. R. New aspects of the mode of action of nonsteroid anti-inflammatory drugs. Annu. Rev. Pharmacol. 1974, 14, 57-73.
https://doi.org/10.1146/annurev.pa.14.040174.000421

[12]. Kamat, V.; Santosh, R.; Poojary, B.; Nayak, S. P.; Kumar, B. K.; Sankaranarayanan, M.; Faheem; Khanapure, S.; Barretto, D. A.; Vootla, S. K. Pyridine- and thiazole-based hydrazides with promising anti-inflammatory and antimicrobial activities along with their in silico studies. ACS Omega 2020, 5, 25228-25239.
https://doi.org/10.1021/acsomega.0c03386

[13]. Tiwari, A. D.; Panda, S. S.; Girgis, A. S.; Sahu, S.; George, R. F.; Srour, A. M.; Starza, B. L.; Asiri, A. M.; Hall, C. D.; Katritzky, A. R. Microwave assisted synthesis and QSAR study of novel NSAID acetaminophen conjugates with amino acid linkers. Org. Biomol. Chem. 2014, 12, 7238-7249.
https://doi.org/10.1039/C4OB01281J

[14]. Channa Basappa, V.; Hamse Kameshwar, V.; Kumara, K.; Achutha, D. K.; Neratur Krishnappagowda, L.; Kariyappa, A. K. Design and synthesis of coumarin-triazole hybrids: biocompatible anti-diabetic agents, in silico molecular docking and ADME screening. Heliyon 2020, 6, e05290.
https://doi.org/10.1016/j.heliyon.2020.e05290

[15]. Ostrowska, K. Coumarin-piperazine derivatives as biologically active compounds. Saudi Pharm. J. 2020, 28, 220-232.
https://doi.org/10.1016/j.jsps.2019.11.025

[16]. Abdel-Kader, N. S.; Moustafa, H.; El-Ansary, A. L.; Farghaly, A. M. Theoretical calculations for new coumarin Schiff base complexes as candidates for in vitro and in silico biological applications. Appl. Organomet. Chem. 2022, 36, e6840.
https://doi.org/10.1002/aoc.6840

[17]. El-Sherief, H. A.; Abuo-Rahma, G. E.-D. A.; Shoman, M. E.; Beshr, E. A.; Abdel-baky, R. M. Design and synthesis of new coumarin-chalcone/NO hybrids of potential biological activity. Med. Chem. Res. 2017, 26, 3077-3090.
https://doi.org/10.1007/s00044-017-2004-9

[18]. Durgapal, S. D.; Soman, S. S. Evaluation of novel coumarin-proline sulfonamide hybrids as anticancer and antidiabetic agents. Synth. Commun. 2019, 1-15.
https://doi.org/10.1080/00397911.2019.1647439

[19]. Emam, S. H.; Sonousi, A.; Osman, E. O.; Hwang, D.; Kim, G.-D.; Hassan, R. A. Design and synthesis of methoxyphenyl- and coumarin-based chalcone derivatives as anti-inflammatory agents by inhibition of NO production and down-regulation of NF-κB in LPS-induced RAW264.7 macrophage cells. Bioorg. Chem. 2021, 107, 104630.
https://doi.org/10.1016/j.bioorg.2021.104630

[20]. Gudimani, P.; Shastri, S. L.; Pawar, V.; Hebbar, N. U.; Shastri, L. A.; Joshi, S.; Vootla, S. K.; Khanapure, S.; Sunagar, V. Synthesis, molecular docking, and biological evaluation of methyl-5-(hydroxyimino)-3-(aryl-substituted)hexanoate derivatives. Eur. J. Chem. 2022, 13, 151-161.
https://doi.org/10.5155/eurjchem.13.2.151-161.2220

[21]. Alshibl, H. M.; Al-Abdullah, E. S.; Haiba, M. E.; Alkahtani, H. M.; Awad, G. E. A.; Mahmoud, A. H.; Ibrahim, B. M. M.; Bari, A.; Villinger, A. Synthesis and evaluation of new coumarin derivatives as antioxidant, antimicrobial, and anti-inflammatory agents. Molecules 2020, 25, 3251.
https://doi.org/10.3390/molecules25143251

[22]. Tapanyiğit, O.; Demirkol, O.; Güler, E.; Erşatır, M.; Çam, M. E.; Giray, E. S. Synthesis and investigation of anti-inflammatory and anticonvulsant activities of novel coumarin-diacylated hydrazide derivatives. Arab. J. Chem. 2020, 13, 9105-9117.
https://doi.org/10.1016/j.arabjc.2020.10.034

[23]. Bhagat, K.; Bhagat, J.; Gupta, M. K.; Singh, J. V.; Gulati, H. K.; Singh, A.; Kaur, K.; Kaur, G.; Sharma, S.; Rana, A.; Singh, H.; Sharma, S.; Singh Bedi, P. M. Design, synthesis, antimicrobial evaluation, and molecular modeling studies of novel indolinedione-coumarin molecular hybrids. ACS Omega 2019, 4, 8720-8730.
https://doi.org/10.1021/acsomega.8b02481

[24]. Puthran, D.; Kamat, V.; Purushotham, N.; Poojary, B.; Rasheed, M. S.; Hegde, H. Expeditious synthesis and biological evaluation of pyrazole conjugated selenium Lumefantrine analogues. J. Iran. Chem. Soc. 2023, 20, 1903-1916.
https://doi.org/10.1007/s13738-023-02807-9

[25]. Hwu, J. R.; Kapoor, M.; Gupta, N. K.; Tsay, S.-C.; Huang, W.-C.; Tan, K.-T.; Hu, Y.-C.; Lyssen, P.; Neyts, J. Synthesis and antiviral activities of quinazolinamine-coumarin conjugates toward chikungunya and hepatitis C viruses. Eur. J. Med. Chem. 2022, 232, 114164.
https://doi.org/10.1016/j.ejmech.2022.114164

[26]. Medina, F. G.; Marrero, J. G.; Macías-Alonso, M.; González, M. C.; Córdova-Guerrero, I.; Teissier García, A. G.; Osegueda-Robles, S. Coumarin heterocyclic derivatives: chemical synthesis and biological activity. Nat. Prod. Rep. 2015, 32, 1472-1507.
https://doi.org/10.1039/C4NP00162A

[27]. Anand, A.; Naik, R. J.; Revankar, H. M.; Kulkarni, M. V.; Dixit, S. R.; Joshi, S. D. A click chemistry approach for the synthesis of mono and bis aryloxy linked coumarinyl triazoles as anti-tubercular agents. Eur. J. Med. Chem. 2015, 105, 194-207.
https://doi.org/10.1016/j.ejmech.2015.10.019

[28]. Hebbar, N. U.; Patil, A. R.; Gudimani, P.; Shastri, S. L.; Shastri, L. A.; Joshi, S. D.; Vootla, S. K.; Khanapure, S.; Shettar, A. K.; Sungar, V. A. Click approach for synthesis of 3,4-dihydro-2(1H) quinolinone, coumarin moored 1,2,3-triazoles as inhibitor of mycobacteria tuberculosis H37RV, their antioxidant, cytotoxicity and in-silico studies. J. Mol. Struct. 2022, 1269, 133795.
https://doi.org/10.1016/j.molstruc.2022.133795

[29]. Kharb, R.; Sharma, P. C.; Yar, M. S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem. 2011, 26, 1-21.
https://doi.org/10.3109/14756360903524304

[30]. Metre, T. V.; Kodasi, B.; Bayannavar, P. K.; Bheemayya, L.; Nadoni, V. B.; Hoolageri, S. R.; Shettar, A. K.; Joshi, S. D.; Kumbar, V. M.; Kamble, R. R. Coumarin-4-yl‐1,2,3‐triazol‐4-yl-methyl-thiazolidine-2,4-diones: Synthesis, glucose uptake activity and cytotoxic evaluation. Bioorg. Chem. 2023, 130, 106235.
https://doi.org/10.1016/j.bioorg.2022.106235

[31]. Susmita Rayawgol, B.; Sujatha, K.; Dalbanjan, N. P.; Praveen Kumar, S. K.; Rajappa, S. K. Development of novel, green, efficient approach for the synthesis of indazole and its derivatives; insights into their pharmacological and molecular docking studies. J. Indian Chem. Soc. 2024, 101, 101178.
https://doi.org/10.1016/j.jics.2024.101178

[32]. Hameed, S.; Kanwal; Seraj, F.; Rafique, R.; Chigurupati, S.; Wadood, A.; Rehman, A. U.; Venugopal, V.; Salar, U.; Taha, M.; Khan, K. M. Synthesis of benzotriazoles derivatives and their dual potential as α-amylase and α-glucosidase inhibitors in vitro: Structure-activity relationship, molecular docking, and kinetic studies. Eur. J. Med. Chem. 2019, 183, 111677.
https://doi.org/10.1016/j.ejmech.2019.111677

[33]. Sun, H.; Song, X.; Tao, Y.; Li, M.; Yang, K.; Zheng, H.; Jin, Z.; Dodd, R. H.; Pan, G.; Lu, K.; Yu, P. Synthesis & α-glucosidase inhibitory & glucose consumption-promoting activities of flavonoid-coumarin hybrids. Future Med. Chem. 2018, 10, 1055-1066.
https://doi.org/10.4155/fmc-2017-0293

[34]. Bak, E.-J.; Park, H.-G.; Lee, C.-H.; Lee, T.-I.; Woo, G.-H.; Na, Y.-H.; Yoo, Y.-J.; Cha, J.-H. Effects of novel chalcone derivatives on α-glucosidase, dipeptidyl peptidase-4, and adipocyte differentiation in vitro. BMB Rep. 2011, 44, 410-414.
https://doi.org/10.5483/BMBRep.2011.44.6.410

[35]. Asgari, M. S.; Mohammadi-Khanaposhtani, M.; Kiani, M.; Ranjbar, P. R.; Zabihi, E.; Pourbagher, R.; Rahimi, R.; Faramarzi, M. A.; Biglar, M.; Larijani, B.; Mahdavi, M.; Hamedifar, H.; Hajimiri, M. H. Biscoumarin-1,2,3-triazole hybrids as novel anti-diabetic agents: Design, synthesis, in vitro α-glucosidase inhibition, kinetic, and docking studies. Bioorg. Chem. 2019, 92, 103206.
https://doi.org/10.1016/j.bioorg.2019.103206

[36]. Bansal, Y.; Sethi, P.; Bansal, G. Coumarin: a potential nucleus for anti-inflammatory molecules. Med. Chem. Res. 2013, 22, 3049-3060.
https://doi.org/10.1007/s00044-012-0321-6

[37]. Dharavath, R.; Nagaraju, N.; Reddy, M. R.; Ashok, D.; Sarasija, M.; Vijjulatha, M.; Vani; Jyothi, K.; Prashanthi, G. Microwave-assisted synthesis, biological evaluation and molecular docking studies of new coumarin-based 1,2,3-triazoles. RSC Adv. 2020, 10, 11615-11623.
https://doi.org/10.1039/D0RA01052A

[38]. Musa, A.; Abulkhair, H. S.; Aljuhani, A.; Rezki, N.; Abdelgawad, M. A.; Shalaby, K.; El-Ghorab, A. H.; Aouad, M. R. Phenylpyrazolone-1,2,3-triazole hybrids as potent antiviral agents with promising SARS-CoV-2 Main protease inhibition potential. Pharmaceuticals (Basel) 2023, 16, 463.
https://doi.org/10.3390/ph16030463

[39]. Kumar, V.; Lal, K.; Kumar, A.; Tittal, R. K.; Singh, M. B.; Singh, P. Efficient synthesis, antimicrobial and molecular modelling studies of 3-sulfenylated oxindole linked 1,2,3-triazole hybrids. Res. Chem. Intermed. 2023, 49, 917-937.
https://doi.org/10.1007/s11164-022-04933-0

[40]. Manzoor, S.; Almarghalani, D. A.; James, A. W.; Raza, M. K.; Kausar, T.; Nayeem, S. M.; Hoda, N.; Shah, Z. A. Synthesis and pharmacological evaluation of novel triazole-pyrimidine hybrids as potential neuroprotective and anti-neuroinflammatory agents. Pharm. Res. 2023, 40, 167-185.
https://doi.org/10.1007/s11095-022-03429-1

[41]. Al-Ghulikah, H.; Ghabi, A.; Haouas, A.; Mtiraoui, H.; Jeanneau, E.; Msaddek, M. Synthesis of new 1,2,3-triazole linked benzimidazolidinone: Single crystal X-ray structure, biological activities evaluation and molecular docking studies. Arab. J. Chem. 2023, 16, 104566.
https://doi.org/10.1016/j.arabjc.2023.104566

[42]. Kapkoti, D. S.; Kumar, S.; Kumar, A.; Darokar, M. P.; Pal, A.; Bhakuni, R. S. Design and synthesis of novel glycyrrhetinic acid-triazole derivatives that exert anti-plasmodial activity inducing mitochondrial-dependent apoptosis in Plasmodium falciparum. New J Chem 2023, 47, 6967-6982.
https://doi.org/10.1039/D2NJ05302K

[43]. Shafique, K.; Farrukh, A.; Mahmood Ali, T.; Qasim, S.; Jafri, L.; Abd-Rabboh, H. S. M.; AL-Anazy, M. M.; Kalsoom, S. Designing click one-pot synthesis and antidiabetic studies of 1,2,3-triazole derivatives. Molecules 2023, 28, 3104.
https://doi.org/10.3390/molecules28073104

[44]. Sireesha, R.; Tej, M. B.; Poojith, N.; Sreenivasulu, R.; Musuluri, M.; Subbarao, M. Synthesis of substituted aryl incorporated oxazolo[4,5-b]pyridine-triazole derivatives: Anticancer evaluation and molecular docking studies. Polycycl. Aromat. Compd. 2023, 43, 915-932.
https://doi.org/10.1080/10406638.2021.2021256

[45]. Khouzani, M. A.; Mogharabi, M.; Faramarzi, M. A.; Mojtabavi, S.; Azizian, H.; Mahdavi, M.; Hashemi, S. M. Development of coumarin tagged 1,2,3-triazole derivatives targeting α-glucosidase inhibition: Synthetic modification, biological evaluation, kinetic and in silico studies. J. Mol. Struct. 2023, 1282, 135194.
https://doi.org/10.1016/j.molstruc.2023.135194

[46]. Zala, A. R.; Naik, H. N.; Ahmad, I.; Patel, H.; Jauhari, S.; Kumari, P. Design and synthesis of novel 1,2,3-triazole linked hybrids: Molecular docking, MD simulation, and their antidiabetic efficacy as α-Amylase inhibitors. J. Mol. Struct. 2023, 1285, 135493.
https://doi.org/10.1016/j.molstruc.2023.135493

[47]. Channabasappa, V.; Kumara, K.; Kariyappa, A. K. Design, synthesis of coumarin tethered 1,2,3-triazoles analogues, evaluation of their antimicrobial and α-amylase inhibition activities. J. Chem. Sci. (Bangalore) 2021, 133.
https://doi.org/10.1007/s12039-021-01997-0

[48]. Sharma, A.; Bharate, S. B. Synthesis and biological evaluation of coumarin triazoles as dual inhibitors of cholinesterases and β-secretase. ACS Omega 2023, 8, 11161-11176.
https://doi.org/10.1021/acsomega.2c07993

[49]. Design, Synthesis, Anticancer Activity and Molecular Docking of New 1,2,3-Triazole combined Glucosides with coumarin. Journal of Population Therapeutics and Clinical Pharmacology 2023, 30, 345-356.
https://doi.org/10.47750/jptcp.2023.30.09.035

[50]. Singh, G.; Mohit; Diksha; Suman; Priyanka; Singh, K. N.; Gonzalez-Silvera, D.; Espinosa-Ruiz, C.; Esteban, M. A. Functionalized organosilanes and their magnetic nanoparticles as receptor for Sn (II) ions detection and potent antioxidants. J. Mol. Struct. 2022, 1247, 131297.
https://doi.org/10.1016/j.molstruc.2021.131297

[51]. Kusanur, R. A.; Kulkarni, M. V.; Kulkarni, G. M.; Nayak, S. K.; Guru Row, T. N.; Ganesan, K.; Sun, C.-M. Unusual anisotropic effects from 1,3‐dipolar cycloadducts of 4‐azidomethyl coumarins. J. Heterocycl. Chem. 2010, 47, 91-97.
https://doi.org/10.1002/jhet.273

[52]. Pereira, R. P.; Jadhav, R.; Baghela, A.; Barretto, D. A. In vitro assessment of probiotic potential of Saccharomyces cerevisiae DABRP5 isolated from Bollo batter, a traditional goan fermented food. Probiotics Antimicrob. Proteins 2021, 13, 796-808.
https://doi.org/10.1007/s12602-020-09734-8

[53]. Granados-Guzmán, G.; Castro-Rios, R.; de Torres, N. W.; Salazar-Aranda, R. Optimization and validation of a microscale in vitro method to assess α-glucosidase inhibition activity. Curr. Anal. Chem. 2018, 14, 458-464.
https://doi.org/10.2174/1573411013666170911154755

[54]. Mizushima, Y.; Kobayashi, M. Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. J. Pharm. Pharmacol. 2011, 20, 169-173.
https://doi.org/10.1111/j.2042-7158.1968.tb09718.x

[55]. Sakat, S.; Tupe, P.; Juvekar, A. Gastroprotective effect of methanol extract of Oxalis corniculata Linn (whole plant) experimental animals. Planta Med. 2010, 76.
https://doi.org/10.1055/s-0030-1264388

[56]. Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785-2791.
https://doi.org/10.1002/jcc.21256

[57]. Trott, O.; Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455-461.
https://doi.org/10.1002/jcc.21334

[58]. O'Boyle, N. M. Towards a Universal SMILES representation - A standard method to generate canonical SMILES based on the InChI. J. Cheminform. 2012, 4.
https://doi.org/10.1186/1758-2946-4-22

[59]. Ambrus, G.; Whitby, L. R.; Singer, E. L.; Trott, O.; Choi, E.; Olson, A. J.; Boger, D. L.; Gerace, L. Small molecule peptidomimetic inhibitors of importin α/β mediated nuclear transport. Bioorg. Med. Chem. 2010, 18, 7611-7620.
https://doi.org/10.1016/j.bmc.2010.08.038

[60]. Feunaing, R. T.; Tamfu, A. N.; Gbaweng, A. J. Y.; Mekontso Magnibou, L.; Ntchapda, F.; Henoumont, C.; Laurent, S.; Talla, E.; Dinica, R. M. In Vitro Evaluation of α-amylase and α-glucosidase Inhibition of 2,3-Epoxyprocyanidin C1 and Other Constituents from Pterocarpus erinaceus Poir. Molecules 2022, 28, 126.
https://doi.org/10.3390/molecules28010126

[61]. Kamat, V.; Barretto, D. A.; Poojary, B.; Kumar, A.; Patil, V. B.; Hamzad, S. In vitro α-amylase and α-glucosidase inhibition study of dihydropyrimidinones synthesized via one-pot Biginelli reaction in the presence of a green catalyst. Bioorg. Chem. 2024, 143, 107085.
https://doi.org/10.1016/j.bioorg.2023.107085

[62]. Xie, Z.; Wang, G.; Wang, J.; Chen, M.; Peng, Y.; Li, L.; Deng, B.; Chen, S.; Li, W. Synthesis, biological evaluation, and molecular docking studies of novel isatin-thiazole derivatives as α-glucosidase inhibitors. Molecules 2017, 22, 659.
https://doi.org/10.3390/molecules22040659

Supporting Agencies

Karnatak University, Dharwad-580003, Karnataka, India, Council of Scientific and Industrial Research-University Grant Commission (CSIR-UGC) fellowship (Ref. No.: 151674 Roll. No. DEC: 2018-2019), University Scientific Instrumentation centre (USIC) and the Sophisticated Analytical Instrument Facilities-Department of Science and Technology (SAIF-DST) of Karnatak University, Dharwad, India
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).