European Journal of Chemistry

Synthesis, characterization, DFT, biological activities and molecular docking analysis of Schiff base ligand and its transition metal complexes

Crossmark


Main Article Content

Minakshee Abhijit Todarwal
Samina Karimkha Tadavi
Rakesh Suresh Sancheti
Ratnamala Subhash Bendre

Abstract

In this study, we synthesized a tetradentate Salen type Schiff base ligand (H2L = 6,6'-(((4-chloro-1,2-phenylene)bis(azanylylidene))bis(methanylylidene)) bis(2-isopropyl-5-methyl-phenol)) containing N2O2 donor atoms and its analogous transition metal complexes, namely CoL, NiL, CuL, and ZnL. The ligand was prepared through the condensation reaction of 3-isopropyl-6-methylsalicyaldehyde and 4-chloro-1,2-phenylene diamine. Various spectroscopic methods viz. FT-IR, UV-Vis, 1H- and 13C-NMR, ESI-MS, and elemental analysis were utilized to elucidate the synthesized compounds. The free ligand coordinates with the metal ions in 1:1 molar ratio. The bactericidal investigations of the compounds were performed against S. aureus, S. pyogenes, E. coli, and P. aeruginosa. Antimalarial, anti-inflammatory and antioxidant activities were also studied. The DFT study was performed to optimize the geometry and evaluate the chemical reactivity parameters. The molecular docking investigation was performed to evaluate the binding interactions and binding energy of the synthesized compounds against cysteine protease SpeB and lactate dehydrogenase receptor proteins. This investigation established a good correlation between theoretical and practical outcomes.


icon graph This Abstract was viewed 942 times | icon graph Article PDF downloaded 337 times

How to Cite
(1)
Todarwal, M. A.; Tadavi, S. K.; Sancheti, R. S.; Bendre, R. S. Synthesis, Characterization, DFT, Biological Activities and Molecular Docking Analysis of Schiff Base Ligand and Its Transition Metal Complexes. Eur. J. Chem. 2024, 15, 128-142.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Gogoi, H. P.; Barman, P. Salophen type ONNO donor Schiff base complexes: Synthesis, characterization, bioactivity, computational, and molecular docking investigation. Inorganica Chim. Acta 2023, 556, 121668.
https://doi.org/10.1016/j.ica.2023.121668

[2]. Vernekar, B. K.; Sawant, P. S. Interaction of metal ions with Schiff bases having N2O2 donor sites: Perspectives on synthesis, structural features, and applications. Results Chem. 2023, 6, 101039.
https://doi.org/10.1016/j.rechem.2023.101039

[3]. Hosny, S.; El-Baki, R. F. A.; El-Wahab, Z. H. A.; Gouda, G. A.; Saddik, M. S.; Aljuhani, A.; Abu-Dief, A. M. Development of novel nano-sized imine complexes using Coriandrum sativum extract: Structural elucidation, non-isothermal kinetic study, theoretical investigation and pharmaceutical applications. Int. J. Mol. Sci. 2023, 24, 14259.
https://doi.org/10.3390/ijms241814259

[4]. Abu-Dief, A. M.; El-Khatib, R. M.; Aljohani, F. S.; Al-Abdulkarim, H. A.; Alzahrani, S.; El-Sarrag, G.; Ismael, M. Synthesis, structural elucidation, DFT calculation, biological studies and DNA interaction of some aryl hydrazone Cr3+, Fe3+, and Cu2+ chelates. Comput. Biol. Chem. 2022, 97, 107643.
https://doi.org/10.1016/j.compbiolchem.2022.107643

[5]. Abu-Dief, A. M.; El-khatib, R. M.; Sayed, S. M. E.; Alzahrani, S.; Alkhatib, F.; El-Sarrag, G.; Ismael, M. Tailoring, structural elucidation, DFT calculation, DNA interaction and pharmaceutical applications of some aryl hydrazone Mn(II), Cu(II) and Fe(III) complexes. J. Mol. Struct. 2021, 1244, 131017.
https://doi.org/10.1016/j.molstruc.2021.131017

[6]. Aljohani, E. T.; Shehata, M. R.; Alkhatib, F.; Alzahrani, S. O.; Abu-Dief, A. M. Development and structure elucidation of new VO2+, Mn2+, Zn2+, and Pd2+ complexes based on azomethine ferrocenyl ligand: DNA interaction, antimicrobial, antioxidant, anticancer activities, and molecular docking. Appl. Organomet. Chem. 2021, 35, e6154.
https://doi.org/10.1002/aoc.6154

[7]. Aljohani, E. T.; Shehata, M. R.; Abu-Dief, A. M. Design, synthesis, structural inspection of Pd2+, VO2+, Mn2+, and Zn2+chelates incorporating ferrocenyl thiophenol ligand: DNA interaction and pharmaceutical studies. Appl. Organomet. Chem. 2021, 35, e6169.
https://doi.org/10.1002/aoc.6169

[8]. Abdel-Rahman, L. H.; Abu-Dief, A. M.; Moustafa, H.; Abdel-Mawgoud, A. A. H. Design and nonlinear optical properties (NLO) using DFT approach of new Cr(III), VO(II), and Ni(II) chelates incorporating tri-dentate imine ligand for DNA interaction, antimicrobial, anticancer activities and molecular docking studies. Arab. J. Chem. 2020, 13, 649-670.
https://doi.org/10.1016/j.arabjc.2017.07.007

[9]. Abdel-Rahman, L. H.; Abu-Dief, A. M.; Hassan Abdel-Mawgoud, A. A. Development, structural investigation, DNA binding, antimicrobial screening and anticancer activities of two novel quari-dentate VO(II) and Mn (II) mononuclear complexes. J. King Saud Univ. Sci. 2019, 31, 52-60.
https://doi.org/10.1016/j.jksus.2017.05.011

[10]. Abdel-Rahman, L. H.; Adam, M. S. S.; Abu-Dief, A. M.; Moustafa, H.; Basha, M. T.; Aboraia, A. S.; Al-Farhan, B. S.; Ahmed, H. E.-S. Synthesis, theoretical investigations, biocidal screening, DNA binding, in vitro cytotoxicity and molecular docking of novel Cu (II), Pd (II) and Ag (I) complexes of chlorobenzylidene Schiff base: Promising antibiotic and anticancer agents. Appl. Organomet. Chem. 2018, 32, e4527.
https://doi.org/10.1002/aoc.4527

[11]. Abdel-Rahman, L. H.; Abu-Dief, A. M.; Aboelez, M. O.; Hassan Abdel-Mawgoud, A. A. DNA interaction, antimicrobial, anticancer activities and molecular docking study of some new VO(II), Cr(III), Mn(II) and Ni(II) mononuclear chelates encompassing quaridentate imine ligand. J. Photochem. Photobiol. B 2017, 170, 271-285.
https://doi.org/10.1016/j.jphotobiol.2017.04.003

[12]. Abdel-Rahman, L. H.; Abu-Dief, A. M.; El-Khatib, R. M.; Abdel-Fatah, S. M. Some new nano-sized Fe(II), Cd(II) and Zn(II) Schiff base complexes as precursor for metal oxides: Sonochemical synthesis, characterization, DNA interaction, in vitro antimicrobial and anticancer activities. Bioorg. Chem. 2016, 69, 140-152.
https://doi.org/10.1016/j.bioorg.2016.10.009

[13]. Adly, O. M. I.; Taha, A.; Fahmy, S. A. Synthesis, spectral characterization, molecular modeling and antimicrobial activity of new potentially N2O2 Schiff base complexes. J. Mol. Struct. 2013, 1054-1055, 239-250.
https://doi.org/10.1016/j.molstruc.2013.09.037

[14]. Sharma, V.; Arora, E. K.; Cardoza, S. Synthesis, antioxidant, antibacterial, and DFT study on a coumarin based salen-type Schiff base and its copper complex. Chem. Pap. 2016, 70, 1493-1502.
https://doi.org/10.1515/chempap-2016-0083

[15]. Das, K.; Shetty, M. G.; Melanthota, S. K.; Sundara, B. K.; Kar, S.; Massera, C.; Garribba, E.; Datta, A.; Mazumder, N. Structural elucidation of a Mn(III) derivative anchored with a tetradentate Schiff base precursor: in vitro cytotoxicity study. Chem. Pap. 2023, 77, 1989-1998.
https://doi.org/10.1007/s11696-022-02599-x

[16]. Damercheli, M.; Dayyani, D.; Behzad, M.; Mehravi, B.; Shafiee Ardestani, M. New salen-type manganese(III) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine: In vitro anticancer activity, mechanism of action, and molecular docking studies. J. Coord. Chem. 2015, 68, 1500-1513.
https://doi.org/10.1080/00958972.2015.1027697

[17]. Singh, A.; Gogoi, H. P.; Barman, P.; Das, A.; Pandey, P. Tetracoordinated ONNO donor purine‐based Schiff base and its metal complexes: Synthesis, characterization, DNA binding, theoretical studies, and bioactivities. Appl. Organomet. Chem. 2022, 36, e6852.
https://doi.org/10.1002/aoc.6852

[18]. Abdel-Rahman, L. H.; Ismail, N. M.; Ismael, M.; Abu-Dief, A. M.; Ahmed, E. A.-H. Synthesis, characterization, DFT calculations and biological studies of Mn(II), Fe(II), Co(II) and Cd(II) complexes based on a tetradentate ONNO donor Schiff base ligand. J. Mol. Struct. 2017, 1134, 851-862.
https://doi.org/10.1016/j.molstruc.2017.01.036

[19]. Abdel-Rahman, L. H.; Adam, M. S. S.; Al-Zaqri, N.; Shehata, M. R.; El-Sayed Ahmed, H.; Mohamed, S. K. Synthesis, characterization, biological and docking studies of ZrO(II), VO(II) and Zn(II) complexes of a halogenated tetra-dentate Schiff base. Arab. J. Chem. 2022, 15, 103737.
https://doi.org/10.1016/j.arabjc.2022.103737

[20]. Ariyaeifar, M.; Amiri Rudbari, H.; Sahihi, M.; Kazemi, Z.; Kajani, A. A.; Zali-Boeini, H.; Kordestani, N.; Bruno, G.; Gharaghani, S. Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study. J. Mol. Struct. 2018, 1161, 497-511.
https://doi.org/10.1016/j.molstruc.2018.02.042

[21]. World malaria report 2022. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 (accessed January 26, 2024).

[22]. Dalal, M.; Antil, N.; Kumar, B.; Devi, J.; Garg, S. Exploring the novel aryltellurium(IV) complexes: Synthesis, characterization, antioxidant, antimicrobial, antimalarial, theoretical and ADMET studies. Inorg. Chem. Commun. 2024, 159, 111743.
https://doi.org/10.1016/j.inoche.2023.111743

[23]. Anacona, J. R.; Santaella, J.; Al-shemary, R. K. R.; Amenta, J.; Otero, A.; Ramos, C.; Celis, F. Ceftriaxone-based Schiff base transition metal(II) complexes. Synthesis, characterization, bacterial toxicity, and DFT calculations. Enhanced antibacterial activity of a novel Zn(II) complex against S. aureus and E. coli. J. Inorg. Biochem. 2021, 223, 111519.
https://doi.org/10.1016/j.jinorgbio.2021.111519

[24]. Ramesh, G.; Daravath, S.; Swathi, M.; Sumalatha, V.; Shiva Shankar, D.; Shivaraj Investigation on Co(II), Ni(II), Cu(II) and Zn(II) complexes derived from quadridentate salen-type Schiff base: Structural characterization, DNA interactions, antioxidant proficiency and biological evaluation. Chem. Data Coll. 2020, 28, 100434.
https://doi.org/10.1016/j.cdc.2020.100434

[25]. Farag, A. M.; Guan, T. S.; Osman, H.; Majid, A. M. S. A.; Iqbal, M. A.; Ahamed, M. B. K. Synthesis of metal(II) [M = Cu, Mn, Zn] Schiff base complexes and their Pro-apoptotic activity in liver tumor cells via caspase activation. Med. Chem. Res. 2013, 22, 4727-4736.
https://doi.org/10.1007/s00044-013-0482-y

[26]. Kargar, H.; Adabi Ardakani, A.; Munawar, K. S.; Ashfaq, M.; Tahir, M. N. Nickel(II), copper(II) and zinc(II) complexes containing symmetrical Tetradentate Schiff base ligand derived from 3,5-diiodosalicylaldehyde: Synthesis, characterization, crystal structure and antimicrobial activity. J. Iran. Chem. Soc. 2021, 18, 2493-2503.
https://doi.org/10.1007/s13738-021-02207-x

[27]. Abdel Aziz, A. A.; Ramadan, R. M.; Sidqi, M. E.; Sayed, M. A. Structural characterisation of novel mononuclear Schiff base metal complexes, DFT calculations, molecular docking studies, free radical scavenging, DNA binding evaluation and cytotoxic activity. Appl. Organomet. Chem. 2023, 37, e6954.
https://doi.org/10.1002/aoc.6954

[28]. Bendre, R. S.; Tadavi, S. K.; Patil, M. M. Synthesis, crystal structures and biological activities of transition metal complexes of a salen-type ligand. Transit. Met. Chem. 2018, 43, 83-89.
https://doi.org/10.1007/s11243-017-0196-y

[29]. Subhash; Chaudhary, A.; Mamta; Jyoti Synthesis, structural characterization, thermal analysis, DFT, biocidal evaluation and molecular docking studies of amide-based Co(II) complexes. Chem. Pap. 2023, 77, 5059-5078.
https://doi.org/10.1007/s11696-023-02843-y

[30]. Tople, M. S.; Patel, N. B.; Patel, P. P.; Purohit, A. C.; Ahmad, I.; Patel, H. An in silico-in vitro antimalarial and antimicrobial investigation of newer 7-chloroquinoline based Schiff-bases. J. Mol. Struct. 2023, 1271, 134016.
https://doi.org/10.1016/j.molstruc.2022.134016

[31]. Desjardins, R. E.; Canfield, C. J.; Haynes, J. D.; Chulay, J. D. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob. Agents Chemother. 1979, 16, 710-718.
https://doi.org/10.1128/AAC.16.6.710

[32]. Gandhidasan, R.; Thamaraichelvan, A.; Baburaj, S. Anti inflammatory action of Lannea coromandelica by HRBC membrane stabilization. Fitoterapia 1991, 62, 81-83.

[33]. Anosike, C. A.; Obidoa, O.; Ezeanyika, L. U. S. Membrane stabilization as a mechanism of the anti-inflammatory activity of methanol extract of garden egg (Solanum aethiopicum). Daru 2012, 20, 76 https://doi.org/10.1186/2008-2231-20-76.
https://doi.org/10.1186/2008-2231-20-76

[34]. Krishna, G. A.; Dhanya, T. M.; Shanty, A. A.; Raghu, K. G.; Mohanan, P. V. Transition metal complexes of imidazole derived Schiff bases: Antioxidant/anti-inflammatory/antimicrobial/enzyme inhibition and cytotoxicity properties. J. Mol. Struct. 2023, 1274, 134384.
https://doi.org/10.1016/j.molstruc.2022.134384

[35]. Ejidike, I. P.; Ajibade, P. A. Synthesis, characterization, and in vitro antioxidant and anticancer studies of ruthenium(III) complexes of symmetric and asymmetric tetradentate Schiff bases. J. Coord. Chem. 2015, 68, 2552-2564.
https://doi.org/10.1080/00958972.2015.1043127

[36]. Al-Amiery, A. A.; Kadhum, A. A. H.; Mohamad, A. B. Antifungal and antioxidant activities of pyrrolidone thiosemicarbazone complexes. Bioinorg. Chem. Appl. 2012, 2012, 1-6.
https://doi.org/10.1155/2012/795812

[37]. Bathula, R.; Muddagoni, N.; Lanka, G.; Dasari, M.; Potlapally, S. Glide docking, AutoDock, binding free energy and drug-likeness studies for prediction of potential inhibitors of cyclin-dependent kinase 14 protein in Wnt signaling pathway. Biointerface Res. Appl. Chem. 2021, 12, 2473-2488.
https://doi.org/10.33263/BRIAC122.24732488

[38]. Patel, H.; Dhangar, K.; Sonawane, Y.; Surana, S.; Karpoormath, R.; Thapliyal, N.; Shaikh, M.; Noolvi, M.; Jagtap, R. In search of selective 11β-HSD type 1 inhibitors without nephrotoxicity: An approach to resolve the metabolic syndrome by virtual based screening. Arab. J. Chem. 2018, 11, 221-232.
https://doi.org/10.1016/j.arabjc.2015.08.003

[39]. Wang, A. Y.; González-Páez, G. E.; Wolan, D. W. Identification and co-complex structure of a new S. pyogenes SpeB small molecule inhibitor. Biochemistry 2015, 54, 4365-4373.
https://doi.org/10.1021/acs.biochem.5b00607

[40]. Radwan, H. A.; Ahmad, I.; Othman, I. M. M.; Gad-Elkareem, M. A. M.; Patel, H.; Aouadi, K.; Snoussi, M.; Kadri, A. Design, synthesis, in vitro anticancer and antimicrobial evaluation, SAR analysis, molecular docking and dynamic simulation of new pyrazoles, triazoles and pyridazines based isoxazole. J. Mol. Struct. 2022, 1264, 133312.
https://doi.org/10.1016/j.molstruc.2022.133312

[41]. Mazri, R.; Ouassaf, M.; Kerassa, A.; Alhatlani, B. Y. Exploring potential therapeutics: Targeting dengue virus NS5 through molecular docking, ADMET profiling, and DFT analysis. Chemical Physics Impact 2024, 8, 100468.
https://doi.org/10.1016/j.chphi.2024.100468

[42]. Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J. Y.; Wang, L.; Lupyan, D.; Dahlgren, M. K.; Knight, J. L.; Kaus, J. W.; Cerutti, D. S.; Krilov, G.; Jorgensen, W. L.; Abel, R.; Friesner, R. A. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput. 2016, 12, 281-296.
https://doi.org/10.1021/acs.jctc.5b00864

[43]. Ahmad, I.; Shaikh, M.; Surana, S.; Ghosh, A.; Patel, H. p38α MAP kinase inhibitors to overcome EGFR tertiary C797S point mutation associated with osimertinib in non-small cell lung cancer (NSCLC): emergence of fourth-generation EGFR inhibitor. J. Biomol. Struct. Dyn. 2022, 40, 3046-3059.
https://doi.org/10.1080/07391102.2020.1844801

[44]. Ahmad, I.; Pawara, R. H.; Girase, R. T.; Pathan, A. Y.; Jagatap, V. R.; Desai, N.; Ayipo, Y. O.; Surana, S. J.; Patel, H. Synthesis, molecular modeling study, and quantum-chemical-based investigations of isoindoline-1,3-diones as antimycobacterial agents. ACS Omega 2022, 7, 21820-21844.
https://doi.org/10.1021/acsomega.2c01981

[45]. Ahmad, I.; Pawara, R.; Patel, H. In silico toxicity investigation of Methaqualone's conjunctival, retinal, and gastrointestinal hemorrhage by molecular modelling approach. Mol. Simul. 2022, 48, 1639-1649.
https://doi.org/10.1080/08927022.2022.2113412

[46]. Girase, R.; Ahmad, I.; Pawara, R.; Patel, H. Optimizing cardio, hepato and phospholipidosis toxicity of the Bedaquiline by chemoinformatics and molecular modelling approach. SAR QSAR Environ. Res. 2022, 33, 215-235.
https://doi.org/10.1080/1062936X.2022.2041724

[47]. Chalkha, M.; Nour, H.; Chebbac, K.; Nakkabi, A.; Bahsis, L.; Bakhouch, M.; Akhazzane, M.; Bourass, M.; Chtita, S.; Bin Jardan, Y. A.; Augustyniak, M.; Bourhia, M.; Aboul-Soud, M. A. M.; El Yazidi, M. Synthesis, characterization, DFT mechanistic study, antimicrobial activity, molecular modeling, and ADMET properties of novel pyrazole-isoxazoline hybrids. ACS Omega 2022, 7, 46731-46744.
https://doi.org/10.1021/acsomega.2c05788

[48]. Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 1-17.
https://doi.org/10.1186/1758-2946-4-17

[49]. Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650-654.
https://doi.org/10.1063/1.438955

[50]. McLean, A. D.; Chandler, G. S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18. J. Chem. Phys. 1980, 72, 5639-5648.
https://doi.org/10.1063/1.438980

[51]. Curtiss, L. A.; McGrath, M. P.; Blaudeau, J.-P.; Davis, N. E.; Binning, R. C., Jr; Radom, L. Extension of Gaussian-2 theory to molecules containing third-row atoms Ga-Kr. J. Chem. Phys. 1995, 103, 6104-6113.
https://doi.org/10.1063/1.470438

[52]. Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li-F. J. Comput. Chem. 1983, 4, 294-301.
https://doi.org/10.1002/jcc.540040303

[53]. Neese, F. Software update: the ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1327.
https://doi.org/10.1002/wcms.1327

[54]. Bühl, M.; Kabrede, H. Geometries of transition-metal complexes from density-functional theory. J. Chem. Theory Comput. 2006, 2, 1282-1290.
https://doi.org/10.1021/ct6001187

[55]. Bühl, M.; Reimann, C.; Pantazis, D. A.; Bredow, T.; Neese, F. Geometries of third-row transition-metal complexes from density-functional theory. J. Chem. Theory Comput. 2008, 4, 1449-1459.
https://doi.org/10.1021/ct800172j

[56]. Xavier, S.; Periandy, S.; Ramalingam, S. NBO, conformational, NLO, HOMO-LUMO, NMR and electronic spectral study on 1-phenyl-1-propanol by quantum computational methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 306-320.
https://doi.org/10.1016/j.saa.2014.08.039

[57]. Tweedy, B. G. Plant Extracts with Metal Ions as Potential Antimicrobial Agents. Phytopatology 1964, 55, 910-918.

[58]. Beyene, B. B.; Mihirteu, A. M.; Ayana, M. T.; Yibeltal, A. W. Synthesis, characterization and antibacterial activity of metalloporphyrins: Role of central metal ion. Results Chem. 2020, 2, 100073.
https://doi.org/10.1016/j.rechem.2020.100073

[59]. Abdalla, E. M.; Abdel Rahman, L. H.; Abdelhamid, A. A.; Shehata, M. R.; Alothman, A. A.; Nafady, A. Synthesis, characterization, theoretical studies, and antimicrobial/antitumor potencies of salen and salen/imidazole complexes of Co (II), Ni (II), Cu (II), Cd (II), Al (III) and La (III). Appl. Organomet. Chem. 2020, 34, e5912.
https://doi.org/10.1002/aoc.5912

[60]. Mansour, A. M. Coordination behavior of sulfamethazine drug towards Ru(III) and Pt(II) ions: Synthesis, spectral, DFT, magnetic, electrochemical and biological activity studies. Inorganica Chim. Acta 2013, 394, 436-445.
https://doi.org/10.1016/j.ica.2012.08.025

[61]. Qasem, H. A.; Sayed, F. N.; Feizi-Dehnayebi, M.; Al-Ghamdi, K.; Omar, I.; Mohamed, G. G.; Abu-Dief, A. M. Development of tripodal imine metal chelates: Synthesis, physicochemical inspection, theoretical studies and biomedical evaluation. Inorg. Chem. Commun. 2024, 162, 112248.
https://doi.org/10.1016/j.inoche.2024.112248

[62]. El-Remaily, M. A. E. A. A. A.; Elhady, O.; Abdou, A.; Alhashmialameer, D.; Eskander, T. N. A.; Abu-Dief, A. M. Development of new 2-(Benzothiazol-2-ylimino)-2,3-dihydro-1H-imidazol-4-ol complexes as a robust catalysts for synthesis of thiazole 6-carbonitrile derivatives supported by DFT studies. J. Mol. Struct. 2023, 1292, 136188.
https://doi.org/10.1016/j.molstruc.2023.136188

[63]. Abu-Dief, A. M.; Said, M. A.; Elhady, O.; Alzahrani, S.; Aljohani, F. S.; Eskander, T. N. A.; Ali El-Remaily, M. A. E. A. A. Design, structural inspection of some new metal chelates based on benzothiazol- pyrimidin-2-ylidene ligand: Biomedical studies and molecular docking approach. Inorg. Chem. Commun. 2023, 158, 111587.
https://doi.org/10.1016/j.inoche.2023.111587

[64]. Abu-Dief, A. M.; El-Dabea, T.; El-Khatib, R. M.; Feizi-Dehnayebi, M.; Aljohani, F. S.; Al-Ghamdi, K.; Omar Barnawi, I.; Abd El Aleem Ali Ali El-Remaily, M. Synthesize, structural inspection, stoichiometry in solution and DFT calculation of some novel mixed ligand complexes: DNA binding, biomedical applications and molecular docking approach. J. Mol. Liq. 2024, 399, 124422.
https://doi.org/10.1016/j.molliq.2024.124422

[65]. Shaghaghi, Z.; Kalantari, N.; Kheyrollahpoor, M.; Haeili, M. Optical, electrochemical, thermal, biological and theoretical studies of some chloro and bromo based metal-salophen complexes. J. Mol. Struct. 2020, 1200, 127107.
https://doi.org/10.1016/j.molstruc.2019.127107

[66]. Tadavi, S. K.; Rajput, J. D.; Bagul, S. D.; Sangshetti, J. N.; Hosamani, A. A.; Bendre, R. S. Crystal structure, spectral characterization and biologically studies of mononuclear transition metal complexes derived from new N2O2 type ligand. Mod. Chem. Appl. 2017, 05, 1-7. http://dx.doi.org/10.4172/2329-6798.1000211.
https://doi.org/10.4172/2329-6798.1000211

[67]. Paul, S.; Barman, P. Exploring diaminomaleonitrile-derived Schiff base ligand and its complexes: Synthesis, characterization, computational insights, biological assessment, and molecular docking. J. Mol. Struct. 2024, 1296, 136941.
https://doi.org/10.1016/j.molstruc.2023.136941

[68]. Sakthivel, R. V.; Sankudevan, P.; Vennila, P.; Venkatesh, G.; Kaya, S.; Serdaroğlu, G. Experimental and theoretical analysis of molecular structure, vibrational spectra and biological properties of the new Co(II), Ni(II) and Cu(II) Schiff base metal complexes. J. Mol. Struct. 2021, 1233, 130097.
https://doi.org/10.1016/j.molstruc.2021.130097

[69]. Tadavi, S. K.; Rajput, J. D.; Bagul, S. D.; Hosamani, A. A.; Sangshetti, J. N.; Bendre, R. S. Synthesis, crystal structures, biological screening and electrochemical analysis of some salen-based transition metal complexes. Res. Chem. Intermed. 2017, 43, 4863-4879.
https://doi.org/10.1007/s11164-017-2917-4

[70]. Rieckmann, K. H.; Campbell, G. H.; Sax, L. J.; Ema, J. E. Drug sensitivity of Plasmodium falciparum. Lancet 1978, 311, 22-23.
https://doi.org/10.1016/S0140-6736(78)90365-3

[71]. Kumar, B.; Devi, J.; Dubey, A.; Tufail, A.; Sharma, S. Exploring the antimalarial, antioxidant, anti-inflammatory activities of newly synthesized transition metal(II) complexes bearing thiosemicarbazone ligands: Insights from molecular docking, DFT, MESP and ADMET studies. Inorg. Chem. Commun. 2024, 159, 111674.
https://doi.org/10.1016/j.inoche.2023.111674

[72]. Savir, S.; Wei, Z. J.; Liew, J. W. K.; Vythilingam, I.; Lim, Y. A. L.; Saad, H. M.; Sim, K. S.; Tan, K. W. Synthesis, cytotoxicity and antimalarial activities of thiosemicarbazones and their nickel (II) complexes. J. Mol. Struct. 2020, 1211, 128090.
https://doi.org/10.1016/j.molstruc.2020.128090

[73]. Savir, S.; Liew, J. W. K.; Vythilingam, I.; Lim, Y. A. L.; Tan, C. H.; Sim, K. S.; Lee, V. S.; Maah, M. J.; Tan, K. W. Nickel(II) complexes with polyhydroxybenzaldehyde and O,N,S tridentate thiosemicarbazone ligands: Synthesis, cytotoxicity, antimalarial activity, and molecular docking studies. J. Mol. Struct. 2021, 1242, 130815.
https://doi.org/10.1016/j.molstruc.2021.130815

[74]. Borhade, S. S.; Tryambake, P. T. Synthesis, characterization, antibacterial, antifungal and antimalarial study of mixed ligand metal complexes derived from azo quinoline with thiosemicarbazone. Asian J. Chem. 2021, 33, 885-891.
https://doi.org/10.14233/ajchem.2021.23110

[75]. Saeidnia, S.; Abdollahi, M. Toxicological and pharmacological concerns on oxidative stress and related diseases. Toxicol. Appl. Pharmacol. 2013, 273, 442-455.
https://doi.org/10.1016/j.taap.2013.09.031

[76]. Kizilkaya, H.; Dag, B.; Aral, T.; Genc, N.; Erenler, R. Synthesis, characterization, and antioxidant activity of heterocyclic Schiff bases. J. Chin. Chem. Soc. 2020, 67, 1696-1701.
https://doi.org/10.1002/jccs.202000161

[77]. Munir, A.; Khushal, A.; Saeed, K.; Sadiq, A.; Ullah, R.; Ali, G.; Ashraf, Z.; Ullah Mughal, E.; Saeed Jan, M.; Rashid, U.; Hussain, I.; Mumtaz, A. Synthesis, in-vitro, in-vivo anti-inflammatory activities and molecular docking studies of acyl and salicylic acid hydrazide derivatives. Bioorg. Chem. 2020, 104, 104168.
https://doi.org/10.1016/j.bioorg.2020.104168

[78]. Shinde, R. A.; Adole, V. A.; Jagdale, B. S.; Desale, B. S. Synthesis, antibacterial and computational studies of Halo Chalcone hybrids from 1-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)ethan-1-one. J. Indian Chem. Soc. 2021, 98, 100051.
https://doi.org/10.1016/j.jics.2021.100051

[79]. Rathi, P.; Khanna, R.; Jaswal, V. S. Quantum parameters based study of some heterocycles using density functional theory method: A comparative theoretical study. J. Chin. Chem. Soc. 2020, 67, 213-217.
https://doi.org/10.1002/jccs.201900134

[80]. Meenukutty, M. S.; Mohan, A. P.; Vidya, V. G.; Viju Kumar, V. G. Synthesis, characterization, DFT analysis and docking studies of a novel Schiff base using 5-bromo salicylaldehyde and β-alanine. Heliyon 2022, 8, e09600.
https://doi.org/10.1016/j.heliyon.2022.e09600

[81]. Sanatkar, T. H.; Khorshidi, A.; Janczak, J. Dinuclear Zn(II) and tetranuclear Co(II) complexes of a tetradentate N2O2 Schiff base ligand: Synthesis, crystal structure, characterization, DFT studies, cytotoxicity evaluation, and catalytic activity toward benzyl alcohol oxidation. Appl. Organomet. Chem. 2020, 34, e5493.
https://doi.org/10.1002/aoc.5493

[82]. Adole, V. A.; More, R. A.; Jagdale, B. S.; Pawar, T. B.; Chobe, S. S.; Shinde, R. A.; Dhonnar, S. L.; Koli, P. B.; Patil, A. V.; Bukane, A. R.; Gacche, R. N. Microwave prompted solvent-free synthesis of new series of heterocyclic tagged 7-arylidene indanone hybrids and their computational, antifungal, antioxidant, and cytotoxicity study. Bioorg. Chem. 2021, 115, 105259.
https://doi.org/10.1016/j.bioorg.2021.105259

[83]. Gaber, M.; El-Ghamry, H. A.; Fathalla, S. K. Synthesis, structural identification, DNA interaction and biological studies of divalent Mn, Co and Ni chelates of 3‐amino‐5‐mercapto‐1,2,4‐triazole azo ligand. Appl. Organomet. Chem. 2020, 34, e5678.
https://doi.org/10.1002/aoc.5678

[84]. Gritsenko, O. V. Koopmans' theorem and its density-functional-theory analog assessed in evaluation of the red shift of vertical ionization potential upon complexation. Chem. Phys. Lett. 2018, 691, 178-180.
https://doi.org/10.1016/j.cplett.2017.11.019

Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).