European Journal of Chemistry

Excited states of diphenylacetylene (tolan): Near and vacuum UV polarization spectroscopy

Crossmark


Main Article Content

Duy Duc Nguyen
Nykola C. Jones
Søren Vrønning Hoffmann
Jens Spanget-Larsen

Abstract

The UV absorbance spectrum of the important chromophore diphenylacetylene (tolan) is investigated by Synchrotron Radiation Linear Dichroism (SRLD) spectroscopy using stretched polyethylene as an anisotropic solvent. The investigation covers the range of 58,000-28,000 cm–1 (172-360 nm). The observed linear dichroism provides information on the transition moment directions of the four main absorbance bands A, B, C, and D at 33,300, 44,400, 51,000, and 57,000 cm-1 (300, 225, 196, and 175 nm). The experimental wavenumbers, intensities, and polarization directions are compared with the results of quantum chemical calculations using the semiempirical all-valence-electrons method Linear Combination of Orthogonalized Atomic Orbitals (LCOAO) and Time-Dependent Density Functional Theory (TD-DFT) with the functional CAM-B3LYP. Magnetic Circular Dichroism (MCD) B-terms predicted with LCOAO suggest that a number of optically weak transitions may be observed by MCD spectroscopy.


icon graph This Abstract was viewed 47 times | icon graph Article PDF downloaded 12 times icon graph Article SUPPL.MATER. downloaded 0 times

How to Cite
(1)
Nguyen, D. D.; Jones, N. C.; Hoffmann, S. V.; Spanget-Larsen, J. Excited States of Diphenylacetylene (tolan): Near and Vacuum UV Polarization Spectroscopy. Eur. J. Chem. 2024, 15, 87-92.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Bunz, U. H. F. Poly(aryleneethynylene)s: Syntheses, properties, structures, and applications. Chem. Rev. 2000, 100, 1605-1644.
https://doi.org/10.1021/cr990257j

[2]. Li, Y.; Zhao, J.; Yin, G. Theoretical investigations of oligo(phenylene ethylene) molecular wire: Effects from substituents and external electric field. Comput. Mater. Sci. 2007, 39, 775-781.
https://doi.org/10.1016/j.commatsci.2006.09.010

[3]. Whitten, D. G.; Tang, Y.; Zhou, Z.; Yang, J.; Wang, Y.; Hill, E. H.; Pappas, H. C.; Donabedian, P. L.; Chi, E. Y. A retrospective: 10 years of oligo(phenylene-ethynylene) electrolytes: Demystifying nanomaterials. Langmuir 2019, 35, 307-325.
https://doi.org/10.1021/acs.langmuir.8b01810

[4]. Chen, H.; Sangtarash, S.; Li, G.; Gantenbein, M.; Cao, W.; Alqorashi, A.; Liu, J.; Zhang, C.; Zhang, Y.; Chen, L.; Chen, Y.; Olsen, G.; Sadeghi, H.; Bryce, M. R.; Lambert, C. J.; Hong, W. Exploring the thermoelectric properties of oligo(phenylene-ethynylene) derivatives. Nanoscale 2020, 12, 15150-15156.
https://doi.org/10.1039/D0NR03303K

[5]. Gutmann, M.; Gudipati, M.; Schoenzart, P. F.; Hohlneicher, G. Electronic spectra of matrix-isolated tolan: site selective one- and two-photon spectra. J. Phys. Chem. 1992, 96, 2433-2442.
https://doi.org/10.1021/j100185a010

[6]. Ferrante, C.; Kensy, U.; Dick, B. Does diphenylacetylene (tolan) fluoresce from its second excited singlet state? Semiempirical MO calculations and fluorescence quantum yield measurements. J. Phys. Chem. 1993, 97, 13457-13463.
https://doi.org/10.1021/j100153a008

[7]. Amatatsu, Y.; Hosokawa, M. Theoretical study on the photochemical behavior of diphenylacetylene in the low-lying excited states. J. Phys. Chem. A 2004, 108, 10238-10244.
https://doi.org/10.1021/jp047308n

[8]. Zgierski, M. Z.; Lim, E. C. Nature of the 'dark' state in diphenylacetylene and related molecules: state switch from the linear ππ∗ state to the bent πσ∗ state. Chem. Phys. Lett. 2004, 387, 352-355.
https://doi.org/10.1016/j.cplett.2004.02.029

[9]. Saltiel, J.; Kumar, V. K. R. Photophysics of diphenylacetylene: Light from the "dark state." J. Phys. Chem. A 2012, 116, 10548-10558.
https://doi.org/10.1021/jp307896c

[10]. Krämer, M.; Bunz, U. H. F.; Dreuw, A. Comprehensive look at the photochemistry of tolane. J. Phys. Chem. A 2017, 121, 946-953.
https://doi.org/10.1021/acs.jpca.6b09596

[11]. Ho, E. K.-L.; Etienne, T.; Lasorne, B. Vibronic properties of para-polyphenylene ethynylenes: TD-DFT insights. J. Chem. Phys. 2017, 146, 164303.
https://doi.org/10.1063/1.4981802

[12]. Robertson, C.; Worth, G. A. Modelling the non-radiative singlet excited state isomerization of diphenyl-acetylene: A vibronic coupling model. Chem. Phys. 2018, 510, 17-29.
https://doi.org/10.1016/j.chemphys.2018.04.020

[13]. Flock, M.; Bosse, L.; Kaiser, D.; Engels, B.; Fischer, I. A time-resolved photoelectron imaging study on isolated tolane: observation of the biradicalic 1Au state. Phys. Chem. Chem. Phys. 2019, 21, 13157-13164.
https://doi.org/10.1039/C9CP02222H

[14]. Fan, L.-X.; Chen, L.; Zhang, H.-Y.; Xu, W.-H.; Wang, X.-L.; Xu, S.; Wang, Y.-Z. Dual photo‐responsive diphenylacetylene enables PET in‐situ upcycling with reverse enhanced UV‐resistance and strength. Angew. Chem. Int. Ed Engl. 2023, 62, e202314448.
https://doi.org/10.1002/anie.202314448

[15]. Thulstrup, P. W.; Hoffmann, S. V.; Hansen, B. K. V.; Spanget-Larsen, J. Unique interplay between electronic states and dihedral angle for the molecular rotor diphenyldiacetylene. Phys. Chem. Chem. Phys. 2011, 13, 16168-16174.
https://doi.org/10.1039/c0cp02914a

[16]. Nguyen, D. D.; Jones, N. C.; Hoffmann, S. V.; Andersen, S. H.; Thulstrup, P. W.; Spanget-Larsen, J. Electronic states of 1,4-bis(phenylethynyl)benzene: A synchrotron radiation linear dichroism investigation. Chem. Phys. 2012, 392, 130-135.
https://doi.org/10.1016/j.chemphys.2011.10.036

[17]. Michl, J.; Thulstrup, E. W. Spectroscopy with polarized light: Solute alignment by photoselection, liquid crystal, polymers, and membranes; John Wiley & Sons: Nashville, TN, 1995.

[18]. Thulstrup, E. W.; Michl, J. Elementary polarization spectroscopy; John Wiley & Sons: Nashville, TN, 1997.

[19]. Madsen, F.; Terpager, I.; Olskær, K.; Spanget-Larsen, J. Ultraviolet-visible and infrared linear dichroism spectroscopy of 1,8-dihydroxy-9,10-anthraquinone aligned in stretched polyethylene. Chem. Phys. 1992, 165, 351-360.
https://doi.org/10.1016/0301-0104(92)87050-J

[20]. Rodger, A.; Norden, B. Circular Dichroism and Linear Dichroism; Oxford University Press: London, England, 1996.
https://doi.org/10.1093/oso/9780198558972.001.0001

[21]. Nordén, B.; Rodger, A.; Dafforn, T. Linear dichroism and circular dichroism: A textbook on polarized-light spectroscopy; Royal Society of Chemistry: Cambridge, England, 2023.

[22]. Thulstrup, E. W.; Waluk, J.; Spanget-Larsen, J. Encyclopedia of spectroscopy and spectrometry; third edition, J.C. Lindon, G.E. Tranter, D.W. Koppenaal, Eds. Academic Press, Oxford, UK, 2017. pp 595-600.
https://doi.org/10.1016/B978-0-12-803224-4.00190-4

[23]. Miles, A. J.; Hoffmann, S. V.; Tao, Y.; Janes, R. W.; Wallace, B. A. Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy: New beamlines and new applications in biology. Spectrosc. Int. J. 2007, 21, 245-255.
https://doi.org/10.1155/2007/282713

[24]. Miles, A. J.; Janes, R. W.; Brown, A.; Clarke, D. T.; Sutherland, J. C.; Tao, Y.; Wallace, B. A.; Hoffmann, S. V. Light flux density threshold at which protein denaturation is induced by synchrotron radiation circular dichroism beamlines. J. Synchrotron Radiat. 2008, 15, 420-422.
https://doi.org/10.1107/S0909049508009606

[25]. Spanget-Larsen, J. The alternant hydrocarbon pairing theorem and all--valence electrons theory. An approximate LCOAO theory for the electronic absorption and MCD spectra of conjugated organic compounds. 1. Croat. Chem. Acta. 1986, 59, 711-717. https://hrcak.srce.hr/file/261320 .

[26]. Spanget-Larsen, J. The alternant hydrocarbon pairing theorem and all-valence electrons theory. An approximate LCOAO theory for the electronic absorption and MCD spectra of conjugated organic compounds, part 2. Theor. Chem. Acc. 1997, 98, 137-153.
https://doi.org/10.1007/s002140050287

[27]. Casida, M. E. Time-dependent density-functional theory for molecules and molecular solids. Theochem 2009, 914, 3-18.
https://doi.org/10.1016/j.theochem.2009.08.018

[28]. Adamo, C.; Jacquemin, D. The calculations of excited-state properties with Time-Dependent Density Functional Theory. Chem. Soc. Rev. 2013, 42, 845-856.
https://doi.org/10.1039/C2CS35394F

[29]. Foresman, J. B.; Frisch, Æ. Exploring chemistry with electronic structure methods; third edition, Gaussian Inc, Wallingford CT, 2015.

[30]. Yanai, T.; Tew, D. P.; Handy, N. C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51-57.
https://doi.org/10.1016/j.cplett.2004.06.011

[31]. Michl, J. Magnetic circular dichroism of aromatic molecules. Tetrahedron 1984, 40, 3845-3934.
https://doi.org/10.1016/S0040-4020(01)99999-5

[32]. Thulstrup, P. W.; Jones, N. C.; Hoffmann, S. V.; Spanget-Larsen, J. Electronic states of the fluorophore 9,10-bis(phenylethynyl) anthracene (BPEA). A synchrotron radiation linear dichroism investigation. Chem. Phys. Lett. 2013, 559, 35-40.
https://doi.org/10.1016/j.cplett.2013.01.005

[33]. Thulstrup, P. W.; Jones, N. C.; Hoffmann, S. V.; Spanget-Larsen, J. UV polarisation spectroscopy of 1,4-diethynylbenzene. Mol. Phys. 2021, 119, e1853841.
https://doi.org/10.1080/00268976.2020.1853841

[34]. PhotochemCAD: 1,2-diphenylacetylene. https://omlc.org/spectra/ PhotochemCAD/html/114.html (accessed August 28, 2023).

[35]. Spanget-Larsen, J. LCOAO Computer Program: Fortran source code with sample input and output, ResearchGate 2005, http://dx.doi.org/10.13140/2.1.3455.6482

[36]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.

[37]. Dunning, T. H., Jr Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007-1023.
https://doi.org/10.1063/1.456153

[38]. Kendall, R. A.; Dunning, T. H., Jr; Harrison, R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796-6806.
https://doi.org/10.1063/1.462569

[39]. Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117-129.
https://doi.org/10.1016/0301-0104(81)85090-2

[40]. Tomasi, J.; Persico, M. Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chem. Rev. 1994, 94, 2027-2094.
https://doi.org/10.1021/cr00031a013

[41]. Cramer, C. J.; Truhlar, D. G. Implicit solvation models: Equilibria, structure, spectra, and dynamics. Chem. Rev. 1999, 99, 2161-2200.
https://doi.org/10.1021/cr960149m

[42]. Scalmani, G.; Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 2010, 132, 114110.
https://doi.org/10.1063/1.3359469

[43]. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456-1465.
https://doi.org/10.1002/jcc.21759

[44]. Nguyen, D. D.; Jones, N. C.; Hoffmann, S. V.; Spanget-Larsen, J. Excited states of trans-stilbene and 1,4-diphenylbutadiene. Near and vacuum UV polarization spectroscopy. J. Mol. Struct. 2023, 1293, 136206.
https://doi.org/10.1016/j.molstruc.2023.136206

[45]. Pariser, R. Theory of the electronic spectra and structure of the polyacenes and of alternant hydrocarbons. J. Chem. Phys. 1956, 24, 250-268.
https://doi.org/10.1063/1.1742461

Supporting Agencies

Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).