European Journal of Chemistry

IgG neutralization potential of COVISHIELD™ vaccinated individual’s sera after booster vaccination: Longitudinal and prospective cohort study

Crossmark


Main Article Content

Naveena Jagadeesan
Praveen Kumar
Nandini Puttamasthi Gowda
Kavitha Karur
Manjunath Cholenalli Nanjappa
Prapulla Kumari
Harsha Tumkur Kumar

Abstract

The novel SARS-CoV-2 (COVID-19) has caused widespread human turmoil by posing challenges concerning infection prevention, disease diagnosis, and treatment. Several approved vaccines including Sinovac (CoronaVac), COVISHIELD™ (Oxford/AstraZeneca formulation), Janssen (Johnson & Johnson), Sputnik V (Gamaleya), Covaxin (Bharat Biotech), Pfizer (BNT162b2), and others are being used to combat COVID-19. It is crucial to evaluate the kinetics of SARS-CoV-2 antibodies to predict the possibility of reinfection and the longevity of vaccination protection. There is a lack of data on longitudinal humoral antibody dynamics following two and three doses of the SARS-CoV-2 vaccination ChAdOx1-nCOV (COVISHIELDTM) in Indians. Thus, concerns about the efficacy of current vaccines have been raised by a sharp rise in coronavirus disease 2019 (Covid-19) cases caused by sub-variants of SARS-CoV-2 (Severe acute respiratory syndrome corona virus 2) in communities that have received massive vaccinations. The relative immunogenicity and safety of various COVID-19 immunizations administered as a third (booster) dose are not well known. We examined the reactogenicity and immunogenicity of the COVID-19 vaccine as a third dose after two doses of COVISHIELDTM to produce data to optimize the selection of booster vaccinations. After three doses of the COVID-19 vaccine, we evaluated the sera of COVISHIELDTM vaccine recipients for their ability to neutralize the virus. Primary immunization with two doses of COVISHIELDTM vaccine recipients provided significant protection against symptomatic disease caused by the SARS-CoV-2 variants. A COVISHIELDTM vaccine booster vaccine recipient substantially increased protection. The immunization findings showed a significant difference (p ≥ 0.001) between the COVID-19 naive vaccine (n = 438) and the sera of COVID-19-positive recovered subjects (n = 371) who received three doses of COVISHIELDTM. Our findings reveal that anti-RBD antibodies persist over time, which may reduce the probability of reinfection. A three-dose vaccination (n = 53) increases defense against variations by noticeably increasing cross-neutralizing antibody titers. Particularly against variants with antibody escape mutations.


icon graph This Abstract was viewed 12 times | icon graph Article PDF downloaded 1 times

How to Cite
(1)
Jagadeesan, N.; Kumar, P.; Gowda, N. P.; Karur, K.; Nanjappa, M. C.; Kumari, P.; Kumar, H. T. IgG Neutralization Potential of COVISHIELD™ Vaccinated individual’s Sera After Booster Vaccination: Longitudinal and Prospective Cohort Study. Eur. J. Chem. 2024, 15, 274-281.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Kumar, P.; Mahantheshappa, S. S.; Balasubramaniyan, S.; Satyanarayan, N. D.; Achur, R. Quinoline analogue as a potential inhibitor of SARS-CoV-2 main protease: ADMET prediction, molecular docking and dynamics simulation analysis. Eur. J. Chem. 2023, 14, 30-38.
https://doi.org/10.5155/eurjchem.14.1.30-38.2350

[2]. Mathieu, E.; Ritchie, H.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Hasell, J.; Macdonald, B.; Dattani, S.; Beltekian, D.; Ortiz-Ospina, E.; Roser, M. Coronavirus (COVID-19) Vaccinations. https://ourworldindata.org/ covid-vaccinations (accessed January 20, 2024).

[3]. Ritchie, H.; Samborska, V.; Ahuja, N.; Ortiz-Ospina, E.; Roser, M. Global Education. https://ourworldindata.org/global-education (accessed January 20, 2024).

[4]. Feikin, D. R.; Higdon, M. M.; Abu-Raddad, L. J.; Andrews, N.; Araos, R.; Goldberg, Y.; Groome, M. J.; Huppert, A.; O'Brien, K. L.; Smith, P. G.; Wilder-Smith, A.; Zeger, S.; Deloria Knoll, M.; Patel, M. K. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. Lancet 2022, 399, 924-944.
https://doi.org/10.1016/S0140-6736(22)00152-0

[5]. Kong, D. Z.; Liang, N.; Yang, G. L.; Zhang, Z.; Liu, Y.; Yang, Y.; Liu, Y. X.; Wang, Q. G.; Zhang, F.; Zhang, H. Y.; Nikolova, D.; Jakobsen, J. C.; Gluud, C.; Liu, J. P. Acupuncture for chronic hepatitis B. Cochrane Libr. 2019. https://doi.org/10.1002/14651858.cd013107.pub2
https://doi.org/10.1002/14651858.CD013107.pub2

[6]. Wang, K.; Jia, Z.; Bao, L.; Wang, L.; Cao, L.; Chi, H.; Hu, Y.; Li, Q.; Zhou, Y.; Jiang, Y.; Zhu, Q.; Deng, Y.; Liu, P.; Wang, N.; Wang, L.; Liu, M.; Li, Y.; Zhu, B.; Fan, K.; Fu, W.; Yang, P.; Pei, X.; Cui, Z.; Qin, L.; Ge, P.; Wu, J.; Liu, S.; Chen, Y.; Huang, W.; Wang, Q.; Qin, C.-F.; Wang, Y.; Qin, C.; Wang, X. Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants. Nature 2022, 603, 919-925.
https://doi.org/10.1038/s41586-022-04466-x

[7]. Soleimanpour, S.; Yaghoubi, A. COVID-19 vaccine: where are we now and where should we go? Expert Rev. Vaccines 2021, 20, 23-44.
https://doi.org/10.1080/14760584.2021.1875824

[8]. Wang, W.; Wu, J.; Zhao, Z.; Li, Q.; Huo, B.; Sun, X.; Han, D.; Liu, M.; Cai, L. C.; Peng, Y.; Bai, J.; Gao, Z. Ultrasensitive automatic detection of small molecules by membrane imaging of single molecule assays. ACS Appl. Mater. Interfaces 2022, 14, 54914-54923.
https://doi.org/10.1021/acsami.2c15373

[9]. Speiser, D. E.; Bachmann, M. F. COVID-19: Mechanisms of vaccination and immunity. Vaccines (Basel) 2020, 8, 404.
https://doi.org/10.3390/vaccines8030404

[10]. Naveena, J.; Nandhini, M. P.; Kavitha, K.; Manjunath, C. N.; Cherukumudi, A.; Prapulla, N. Neutralising antibodies in Healthcare Workers after two doses of Covishield vaccine at three months and six months: A single-centre observational study. J. Clin. Diagn. Res. 2022. https://doi.org/10.7860/jcdr/2022/56189.16758
https://doi.org/10.7860/JCDR/2022/56189.16758

[11]. Yadav, P. D.; Mohandas, S.; Shete, A. M.; Nyayanit, D. A.; Gupta, N.; Patil, D. Y.; Sapkal, G. N.; Potdar, V.; Kadam, M.; Kumar, A.; Kumar, S.; Suryavanshi, D.; Mote, C. S.; Abraham, P.; Panda, S.; Bhargava, B. SARS CoV-2 variant B.1.617.1 is highly pathogenic in hamsters than B.1 variant. bioRxiv 2021.
https://doi.org/10.1101/2021.05.05.442760

[12]. India: COVID-19 vaccines administered by vaccine type 2022. https://www.statista.com/statistics/1248301/india-covid-19-vaccines-administered-by-vaccine-type (accessed January 20, 2024).

[13]. Jain, A.; Negi, G.; Kaur, D.; Vivekanandhan; Saxena, V. Utility of COVID-19 seropositive plasma as convalescent plasma: An immune and neutralization antibody seroprevalence analysis in blood donors for future potential pandemic readiness. Cureus 2024.
https://doi.org/10.7759/cureus.57149

[14]. Zhao, T.; Shen, J.; Zhu, Y.; Tian, X.; Wen, G.; Wei, Y.; Xu, B.; Fu, C.; Xie, Z.; Xi, Y.; Li, Z.; Peng, J.; Wu, Y.; Tang, X.; Wan, C.; Pan, L.; Li, Z.; Qin, D. Immunogenicity of inactivated SARS-CoV-2 vaccines in patients with rheumatoid arthritis: A case series. Front. Public Health 2022, 10.
https://doi.org/10.3389/fpubh.2022.875558

[15]. Covid 19 Ag Microlisa. https://jmitra.co.in/product-details/covid19-ag-microlisa-elisa-test-kit/ (accessed January 20, 2024).

[16]. Cleemput, S.; Dumon, W.; Fonseca, V.; Abdool Karim, W.; Giovanetti, M.; Alcantara, L. C.; Deforche, K.; de Oliveira, T. Genome Detective Coronavirus Typing Tool for rapid identification and characterization of novel coronavirus genomes. Bioinformatics 2020, 36, 3552-3555.
https://doi.org/10.1093/bioinformatics/btaa145

[17]. Kruglikov, I. L.; Scherer, P. E. The role of adipocytes and adipocyte‐like cells in the severity of COVID‐19 infections. Obesity (Silver Spring) 2020, 28, 1187-1190.
https://doi.org/10.1002/oby.22856

[18]. Rabaan, A. A.; Al-Ahmed, S. H.; Muhammad, J.; Khan, A.; Sule, A. A.; Tirupathi, R.; Mutair, A. A.; Alhumaid, S.; Al-Omari, A.; Dhawan, M.; Tiwari, R.; Sharun, K.; Mohapatra, R. K.; Mitra, S.; Bilal, M.; Alyami, S. A.; Emran, T. B.; Moni, M. A.; Dhama, K. Role of inflammatory cytokines in COVID-19 patients: A review on molecular mechanisms, immune functions, immunopathology and immunomodulatory drugs to counter cytokine storm. Vaccines (Basel) 2021, 9, 436.
https://doi.org/10.3390/vaccines9050436

[19]. Gallais, F.; Gantner, P.; Bruel, T.; Velay, A.; Planas, D.; Wendling, M.-J.; Bayer, S.; Solis, M.; Laugel, E.; Reix, N.; Schneider, A.; Glady, L.; Panaget, B.; Collongues, N.; Partisani, M.; Lessinger, J.-M.; Fontanet, A.; Rey, D.; Hansmann, Y.; Kling-Pillitteri, L.; Schwartz, O.; De Sèze, J.; Meyer, N.; Gonzalez, M.; Schmidt-Mutter, C.; Fafi-Kremer, S. Evolution of antibody responses up to 13 months after SARS-CoV-2 infection and risk of reinfection. EBioMedicine 2021, 71, 103561.
https://doi.org/10.1016/j.ebiom.2021.103561

[20]. Bchetnia, M.; Girard, C.; Duchaine, C.; Laprise, C. The outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): A review of the current global status. J. Infect. Public Health 2020, 13, 1601-1610.
https://doi.org/10.1016/j.jiph.2020.07.011

[21]. Vandenberg, O.; Martiny, D.; Rochas, O.; van Belkum, A.; Kozlakidis, Z. Considerations for diagnostic COVID-19 tests. Nat. Rev. Microbiol. 2021, 19, 171-183.
https://doi.org/10.1038/s41579-020-00461-z

[22]. Alter, G.; Seder, R. The power of antibody-based surveillance. N. Engl. J. Med. 2020, 383, 1782-1784.
https://doi.org/10.1056/NEJMe2028079

[23]. Dan, J. M.; Mateus, J.; Kato, Y.; Hastie, K. M.; Yu, E. D.; Faliti, C. E.; Grifoni, A.; Ramirez, S. I.; Haupt, S.; Frazier, A.; Nakao, C.; Rayaprolu, V.; Rawlings, S. A.; Peters, B.; Krammer, F.; Simon, V.; Saphire, E. O.; Smith, D. M.; Weiskopf, D.; Sette, A.; Crotty, S. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 2021, 371.
https://doi.org/10.1126/science.abf4063

[24]. Wang, Z.; Muecksch, F.; Schaefer-Babajew, D.; Finkin, S.; Viant, C.; Gaebler, C.; Hoffmann, H.-H.; Barnes, C. O.; Cipolla, M.; Ramos, V.; Oliveira, T. Y.; Cho, A.; Schmidt, F.; Da Silva, J.; Bednarski, E.; Aguado, L.; Yee, J.; Daga, M.; Turroja, M.; Millard, K. G.; Jankovic, M.; Gazumyan, A.; Zhao, Z.; Rice, C. M.; Bieniasz, P. D.; Caskey, M.; Hatziioannou, T.; Nussenzweig, M. C. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature 2021, 595, 426-431.
https://doi.org/10.1038/s41586-021-03696-9

[25]. Chiereghin, A.; Verucchi, G.; Lazzarotto, T. CMV-specific cell-mediated immunity in immunocompetent adults with primary CMV infection: A case series and review of the literature. Viruses 2021, 13, 816.
https://doi.org/10.3390/v13050816

[26]. Mehdi, F.; Chattopadhyay, S.; Thiruvengadam, R.; Yadav, S.; Kumar, M.; Sinha, S. K.; Goswami, S.; Kshetrapal, P.; Wadhwa, N.; Chandramouli Natchu, U.; Sopory, S.; Koundinya Desiraju, B.; Pandey, A. K.; Das, A.; Verma, N.; Sharma, N.; Sharma, P.; Bhartia, V.; Gosain, M.; Lodha, R.; Lamminmäki, U.; Shrivastava, T.; Bhatnagar, S.; Batra, G. Development of a fast SARS-CoV-2 IgG ELISA, based on receptor-binding domain, and its comparative evaluation using temporally segregated samples from RT-PCR positive individuals. Front. Microbiol. 2021, 11.
https://doi.org/10.3389/fmicb.2020.618097

Supporting Agencies

Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, 560069, Karnataka, India.
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).