European Journal of Chemistry

Synthesis and in vitro evaluation of tetrazole containing 1,5-benzothiazepines as new anticancer, antitubercular, antibacterial, and antifungal agents

Crossmark


Main Article Content

Ashok Kumar Suman
Anu Anu
Bhawani Singh

Abstract

Heterocyclic scaffolds have attracted great attention of organic chemists and medicinal chemists, also because of their wide range of synthetic applicability and broad spectrum of biological profile. Therefore, in the present research work, a series of tetrazole containing 1,5-benzothiazepines have been synthesized for evaluation of their biological activities to determine the potential therapeutic profile of these compounds across various medicinal domains. Of the synthesized compounds, five compounds (6f, 8e, 8f, 8g, and 8h) have been screened for anticancer, antitubercular, antibacterial, and antifungal activities. After evaluation of these biological activities, it was found that these compounds possess very limited anticancer activity, moderate antibacterial and antifungal activity, and very strong antitubercular activity, which indicate their great pharmacological applications as subjects for future investigations of novel therapeutic agents for the treatment of tuberculosis.


icon graph This Abstract was viewed 8 times | icon graph Article PDF downloaded 2 times

How to Cite
(1)
Suman, A. K.; Anu, A.; Singh, B. Synthesis and in Vitro Evaluation of Tetrazole Containing 1,5-Benzothiazepines As New Anticancer, Antitubercular, Antibacterial, and Antifungal Agents. Eur. J. Chem. 2024, 15, 245-253.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Khan, M. F.; Alam, M. M.; Verma, G.; Akhtar, W.; Akhter, M.; Shaquiquzzaman, M. The therapeutic voyage of pyrazole and its analogs: A review. Eur. J. Med. Chem. 2016, 120, 170-201.
https://doi.org/10.1016/j.ejmech.2016.04.077

[2]. Faisal, M.; Saeed, A.; Hussain, S.; Dar, P.; Larik, F. A. Recent developments in synthetic chemistry and biological activities of pyrazole derivatives. J. Chem. Sci. (Bangalore) 2019, 131, 1-30.
https://doi.org/10.1007/s12039-019-1646-1

[3]. Pathania, S.; Narang, R. K.; Rawal, R. K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem. 2019, 180, 486-508.
https://doi.org/10.1016/j.ejmech.2019.07.043

[4]. Feng, M.; Tang, B.; H. Liang, S.; Jiang, X. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry. Curr. Top. Med. Chem. 2016, 16, 1200-1216.
https://doi.org/10.2174/1568026615666150915111741

[5]. Nandakumar, A.; Midya, S. P.; Landge, V. G.; Balaraman, E. Transition‐metal‐catalyzed hydrogen‐transfer annulations: Access to heterocyclic scaffolds. Angew. Chem. Int. Ed Engl. 2015, 54, 11022-11034.
https://doi.org/10.1002/anie.201503247

[6]. Sharma, A.; Kishore, D.; Singh, B. An expedient method for the synthesis of 1,2,4‐triazolo‐fused 1,5‐benzodiazepine, 1,5‐benzo-xazepine, and 1,5‐benzothiazepine scaffolds: A novel seven‐membered ring system of biological interest. J. Heterocycl. Chem. 2018, 55, 586-592.
https://doi.org/10.1002/jhet.3060

[7]. Kaur, R.; Singh, R.; Singh, K. 1,5-benzothiazepine: Bioactivity and targets. Chem Biol Lett 2016, 3, 18-31.

[8]. Nagao, T.; Sato, M.; Iwasawa, Y.; Takada, T.; Ishida, R.; Nakajima, H.; Kiyomoto, A. Studies on a new 1, 5-benzothiazepine derivative (crd-401) iii. Effects of optical isomers of crd-401 on smooth muscle and other pharmacological properties. Jpn. J. Pharmacol. 1972, 22, 467-478.
https://doi.org/10.1254/jjp.22.467

[9]. Bariwal, J. B.; Upadhyay, K. D.; Manvar, A. T.; Trivedi, J. C.; Singh, J. S.; Jain, K. S.; Shah, A. K. 1,5-Benzothiazepine, a versatile pharmacophore: A review. Eur. J. Med. Chem. 2008, 43, 2279-2290.
https://doi.org/10.1016/j.ejmech.2008.05.035

[10]. Dhiaa, S.; Mohammed, S.; Bahir, H.; Hameed, A.; Abdulkareem Mahmood, E.; Abedinifar, F.; Babazadeh Rezaei, E. Recent Advances in Bioactive 1,5-Benzothiazepine-based Compounds: Highlights from 2012 to 2022. Chemical Review and Letters 2023, 6, 390-402.

[11]. Hopenwasser, J.; Mozayani, A.; Danielson, T. J.; Harbin, J.; Narula, H. S.; Posey, D. H.; Shrode, P. W.; Wilson, S. K.; Li, R.; Sanchez, L. A. Postmortem distribution of the novel antipsychotic drug quetiapine. J. Anal. Toxicol. 2004, 28, 264-268.
https://doi.org/10.1093/jat/28.4.264

[12]. Haroun, M.; Chobe, S. S.; Alavala, R. R.; Mathure, S. M.; Jamullamudi, R. N.; Nerkar, C. K.; Gugulothu, V. K.; Tratrat, C.; Islam, M. M.; Venugopala, K. N.; Habeebuddin, M.; Telsang, M.; Sreeharsha, N.; Anwer, M. K. 1,5-benzothiazepine derivatives: Green synthesis, in silico and in vitro evaluation as anticancer agents. Molecules 2022, 27, 3757.
https://doi.org/10.3390/molecules27123757

[13]. Shaik, A. B.; Prasad, Y. R.; Nissankararao, S.; Shahanaaz, S. Synthesis, biological and computational evaluation of novel 2,3-dihydro-2-aryl-4-(4- isobutylphenyl)-1,5-benzothiazepine derivatives as anticancer and anti-EGFR tyrosine kinase agents. Anticancer Agents Med. Chem. 2020, 20, 1115-1128.
https://doi.org/10.2174/1871520620666200130091142

[14]. Gudisela, M. R.; Srinivasu, N.; Mulakayala, C.; Bommu, P.; Rao, M. V. B.; Mulakayala, N. Design, synthesis and anticancer activity of N-(1-(4-(dibenzo[b,f][1,4]thiazepin-11-yl)piperazin-1-yl)-1-oxo-3-phenylpropan-2-yl derivatives. Bioorg. Med. Chem. Lett. 2017, 27, 4140-4145.
https://doi.org/10.1016/j.bmcl.2017.07.029

[15]. Grandolini, G. Synthesis of some new 1,4-benzothiazine and 1,5-benzothiazepine tricyclic derivatives with structural analogy with TIBO and their screening for anti-HIV activity. Eur. J. Med. Chem. 1999, 34, 701-709.
https://doi.org/10.1016/S0223-5234(99)00223-8

[16]. Itoh, K.; Kori, M.; Inada, Y.; Nishikawa, K.; Kawamatsu, Y.; Sugihara, H. Synthesis and angiotensin converting enzyme-inhibitory activity of 1,5-benzothiazepine and 1,5-benzoxazepine derivatives. III. Chem. Pharm. Bull. (Tokyo) 1986, 34, 3747-3761.
https://doi.org/10.1248/cpb.34.3747

[17]. Gharge, S.; Alegaon, S. G. Recent studies of nitrogen and Sulfur containing heterocyclic analogues as novel antidiabetic agents: A review. Chem. Biodivers. 2024, 21, e202301738.
https://doi.org/10.1002/cbdv.202301738

[18]. De Sarro, G.; Chimirri, A.; De Sarro, A.; Gitto, R.; Grasso, S.; Zappalà, M. 5H-[1,2,4]Oxadiazolo[5,4-d][1,5]benzothiazepines as anticonvulsant agents in DBA/2 mice. Eur. J. Med. Chem. 1995, 30, 925-929.
https://doi.org/10.1016/0223-5234(96)88311-5

[19]. Wang, L.; Zhang, P.; Zhang, X.; Zhang, Y.; Li, Y.; Wang, Y. Synthesis and biological evaluation of a novel series of 1,5-benzothiazepine derivatives as potential antimicrobial agents. Eur. J. Med. Chem. 2009, 44, 2815-2821.
https://doi.org/10.1016/j.ejmech.2008.12.021

[20]. Wang, R.; Wang, Y.; Bian, Y.; Zhang, P. Synthesis and antifungal activity of 1,5-benzothiazepines containing 1,2,3-triazole. Youji Huaxue 2020, 40, 398-407.
https://doi.org/10.6023/cjoc201907056

[21]. Saha, D.; Jain, G.; Sharma, A. Benzothiazepines: chemistry of a privileged scaffold. RSC Adv. 2015, 5, 70619-70639.
https://doi.org/10.1039/C5RA12422K

[22]. Devi, V.; Singh, G.; Monga, V. Recent advances in the synthetic chemistry of 1,5‐benzothiazepines: A minireview. J. Heterocycl. Chem. 2020, 57, 3255-3270.
https://doi.org/10.1002/jhet.4062

[23]. Chimirri, A.; Gitto, R.; Grasso, S.; Monforte, A. M.; Zappalà, M. Annelated 1,5-Benzothiazepines. In Advances in Heterocyclic Chemistry; Elsevier, 1995; pp. 61-101.
https://doi.org/10.1016/S0065-2725(08)60472-9

[24]. Ronse, U.; Magdalenić, K.; Van Camp, J.; D'hooghe, M. Synthesis of the 1,5‐benzothiazepane scaffold - established methods and new developments. ChemistryOpen 2023, 12, e202200262.
https://doi.org/10.1002/open.202200262

[25]. Suman, A. K.; Dushad, A.; Singh, B. 1,5-Benzothiazepines: Recent developments in the synthetic strategies. Tetrahedron 2023, 142, 133513.
https://doi.org/10.1016/j.tet.2023.133513

[26]. Gerlier, D.; Thomasset, N. Use of MTT colorimetric assay to measure cell activation. J. Immunol. Methods 1986, 94, 57-63.
https://doi.org/10.1016/0022-1759(86)90215-2

[27]. Wagner, U.; Burkhardt, E.; Failing, K. Evaluation of canine lymphocyte proliferation: comparison of three different colorimetric methods with the -thymidine incorporation assay. Vet. Immunol. Immunopathol. 1999, 70, 151-159.
https://doi.org/10.1016/S0165-2427(99)00041-0

[28]. Berridge, M. V.; Herst, P. M.; Tan, A. S. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. In Biotechnology Annual Review; Elsevier, 2005; pp. 127-152.
https://doi.org/10.1016/S1387-2656(05)11004-7

[29]. Berrington, D.; Lall, N. Anticancer activity of certain herbs and spices on the cervical epithelial carcinoma (HeLa) cell line. Evid. Based. Complement. Alternat. Med. 2012, 2012, 1-11, 564927.
https://doi.org/10.1155/2012/564927

[30]. Wang, L.; Dong, C.; Li, X.; Han, W.; Su, X. Anticancer potential of bioactive peptides from animal sources. Oncol. Rep. 2017, 38, 637-651.
https://doi.org/10.3892/or.2017.5778

[31]. Duque, A.; Lin, S.-Y. G.; Desmond, E.; Rienthong, S.; Rienthong, D.; Boonin, C. Evaluation of the BD Bactec MGIT 320 system for detection of mycobacteria and drug susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol. 2013, 51, 3403-3405.
https://doi.org/10.1128/JCM.01357-13

[32]. Siddiqi, S.; Ahmed, A.; Asif, S.; Behera, D.; Javaid, M.; Jani, J.; Jyoti, A.; Mahatre, R.; Mahto, D.; Richter, E.; Rodrigues, C.; Visalakshi, P.; Rüsch-Gerdes, S. Direct drug susceptibility testing of Mycobacterium tuberculosis for rapid detection of multidrug resistance using the Bactec MGIT 960 system: A multicenter study. J. Clin. Microbiol. 2012, 50, 435-440.
https://doi.org/10.1128/JCM.05188-11

[33]. Lagu, S. B.; Yejella, R. P.; Nissankararao, S.; Bhandare, R. R.; Golla, V. S.; Subrahmanya Lokesh, B. V.; Rahman, M. M.; Shaik, A. B. Antitubercular activity assessment of fluorinated chalcones, 2-aminopyridine-3-carbonitrile and 2-amino-4H-pyran-3-carbonitrile derivatives: In vitro, molecular docking and in-silico drug likeliness studies. PLoS One 2022, 17, e0265068.
https://doi.org/10.1371/journal.pone.0265068

[34]. Wang, A.; Lv, K.; Li, L.; Liu, H.; Tao, Z.; Wang, B.; Liu, M.; Ma, C.; Ma, X.; Han, B.; Wang, A.; Lu, Y. Design, synthesis and biological activity of N-(2-phenoxy)ethyl imidazo[1,2-a]pyridine-3-carboxamides as new antitubercular agents. Eur. J. Med. Chem. 2019, 178, 715-725.
https://doi.org/10.1016/j.ejmech.2019.06.038

[35]. Demers, A.-M.; Venter, A.; Friedrich, S. O.; Rojas-Ponce, G.; Mapamba, D.; Jugheli, L.; Sasamalo, M.; Almeida, D.; Dorasamy, A.; Jentsch, U.; Gibson, M.; Everitt, D.; Eisenach, K. D.; Diacon, A. H. Direct susceptibility testing of Mycobacterium tuberculosis for Pyrazinamide by use of the Bactec MGIT 960 system. J. Clin. Microbiol. 2016, 54, 1276-1281.
https://doi.org/10.1128/JCM.03162-15

[36]. Kendall, E. A.; Cohen, T.; Mitnick, C. D.; Dowdy, D. W. Second line drug susceptibility testing to inform the treatment of rifampin-resistant tuberculosis: a quantitative perspective. Int. J. Infect. Dis. 2017, 56, 185-189.
https://doi.org/10.1016/j.ijid.2016.12.010

[37]. Bhat, K. G.; Nalawade, T. M. Antimicrobial activity of endodontic medicaments and vehicles using agar well diffusion method on facultative and obligate anaerobes. Int. J. Clin. Pediatr. Dent. 2016, 9, 335-341.
https://doi.org/10.5005/jp-journals-10005-1388

[38]. Athanassiadis, B.; Abbott, P. V.; George, N.; Walsh, L. J. An in vitro study of the antimicrobial activity of some endodontic medicaments and their bases using an agar well diffusion assay. Aust. Dent. J. 2009, 54, 141-146.
https://doi.org/10.1111/j.1834-7819.2009.01107.x

[39]. Inglin, R. C.; Stevens, M. J. A.; Meile, L.; Lacroix, C.; Meile, L. High-throughput screening assays for antibacterial and antifungal activities of Lactobacillus species. J. Microbiol. Methods 2015, 114, 26-29.
https://doi.org/10.1016/j.mimet.2015.04.011

[40]. Pérez, C.; Anesini, C. In vitro antibacterial activity of Argentine folk medicinal plants against Salmonella typhi. J. Ethnopharmacol. 1994, 44, 41-46.
https://doi.org/10.1016/0378-8741(94)90097-3

[41]. Wang, L.-Z.; Li, X.-Q.; An, Y.-S. 1,5-Benzodiazepine derivatives as potential antimicrobial agents: design, synthesis, biological evaluation, and structure-activity relationships. Org. Biomol. Chem. 2015, 13, 5497-5509.
https://doi.org/10.1039/C5OB00655D

[42]. Grigoriev, Y. V.; Voitekhovich, S. V.; Karavai, V. P.; Ivashkevich, O. A. Synthesis of tetrazole and its derivatives by heterocyclization reaction involving primary amines, orthoesters, and azides. Chem. Heterocycl. Compd. (N. Y.) 2017, 53, 670-681.
https://doi.org/10.1007/s10593-017-2108-7

[43]. Mandge, S.; Singh, H. P.; Gupta, S. D.; Moorthy, N. S. H. N. Synthesis and characterization of some chalcone derivatives. Trends Appl. Sci. Res. 2007, 2, 52-56.
https://doi.org/10.3923/tasr.2007.52.56

[44]. Abdel-Rahman, A. A.-H.; Abdel-Megied, A. E.-S.; Hawata, M. A. M.; Kasem, E. R.; Shabaan, M. T. Synthesis and antimicrobial evaluation of some chalcones and their derived pyrazoles, pyrazolines, isoxazolines, and 5,6-dihydropyrimidine-2-(1H)-thiones. Monatsh. Chem. 2007, 138, 889-897.
https://doi.org/10.1007/s00706-007-0700-8

[45]. Chate, A. V.; Joshi, R. S.; Mandhane, P. G.; Gill, C. H. An improved procedure for the synthesis of 1,5-benzothiazepines using ceric ammonium nitrate (CAN). J. Korean Chem. Soc. 2011, 55, 776-780.
https://doi.org/10.5012/jkcs.2011.55.5.776

Supporting Agencies

Department of Pure and Applied Chemistry, Faculty of Science, University of Kota, Kota, 324005, India, Materials Research Centre (MRC), Malviya National Institute of Technology (MNIT), Jaipur (Rajasthan), India; the Central Instrumentation Laboratory (CIL), Guru Jambheshwar University of Science & Technology, Hisar (Haryana) and AccuPhyChem Analytics, Jaipur (Rajasthan), India, Biomitra Life Sciences Pvt. Ltd., Jaipur (Rajasthan), India.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).