European Journal of Chemistry

Cutting-edge bioorthogonal chemistry: Innovations, practical applications, and emerging trends

Crossmark


Main Article Content

Anup Basnet Chetry

Abstract

Bioorthogonal chemistry has emerged as a pivotal field in molecular science, offering transformative tools for applications in drug discovery, imaging, and molecular biology. This review provides a comprehensive analysis of recent advancements in bioorthogonal chemistry, emphasizing key innovations, practical applications, and future research directions. We explore state-of-the-art bioorthogonal reactions, including Staudinger ligation, strain-promoted azide-alkyne cycloaddition (SPAAC), and tetrazine ligation, detailing their mechanisms, advantages, and limitations. The review highlights significant innovations such as novel fluorogenic probes, improved catalysts, and enhanced reaction conditions that have expanded the utility and efficiency of these reactions. Practical applications are examined, showing how these advances have revolutionized fields like live-cell imaging, targeted drug delivery, and molecular labeling. Looking to the future, we discuss emerging trends and potential research avenues, including the integration of bioorthogonal chemistry with other advanced technologies and the development of new reaction methodologies. This review provides a detailed overview of the current state of bioorthogonal chemistry and outlines its future potential, serving as a valuable resource for researchers and practitioners in the field.


icon graph This Abstract was viewed 163 times | icon graph Article PDF downloaded 62 times

How to Cite
(1)
Chetry, A. B. Cutting-Edge Bioorthogonal Chemistry: Innovations, Practical Applications, and Emerging Trends. Eur. J. Chem. 2024, 15, 355-365.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Prescher, J. A.; Bertozzi, C. R. Chemistry in living systems. Nat. Chem. Biol. 2005, 1 (1), 13-21.
https://doi.org/10.1038/nchembio0605-13

[2]. Sletten, E. M.; Bertozzi, C. R. From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions. Acc. Chem. Res. 2011, 44 (9), 666-676.
https://doi.org/10.1021/ar200148z

[3]. Chaudhuri, R.; Bhattacharya, S.; Dash, J. Bioorthogonal Chemistry in Translational Research: Advances and Opportunities. ChemBioChem. 2023, 24 (23), e202300474 https://doi.org/10.1002/ cbic.202300474.
https://doi.org/10.1002/cbic.202300474

[4]. Sletten, E.; Bertozzi, C. Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality. Angew. Chem. Int. Ed. 2009, 48 (38), 6974-6998.
https://doi.org/10.1002/anie.200900942

[5]. Borrmann, A.; van Hest, J. C. Bioorthogonal chemistry in living organisms. Chem. Sci. 2014, 5 (6), 2123-2134.
https://doi.org/10.1039/c3sc52768a

[6]. Hartung, K. M.; Sletten, E. M. Bioorthogonal chemistry: Bridging chemistry, biology, and medicine. Chem. 2023, 9 (8), 2095-2109.
https://doi.org/10.1016/j.chempr.2023.05.016

[7]. Qin, L.; Hu, W.; Long, Y. Bioorthogonal chemistry: Optimization and application updates during 2013-2017. Tetrahedron. Letters. 2018, 59 (23), 2214-2228.
https://doi.org/10.1016/j.tetlet.2018.04.058

[8]. Bird, R. E.; Lemmel, S. A.; Yu, X.; Zhou, Q. A. Bioorthogonal Chemistry and Its Applications. Bioconjugate. Chem. 2021, 32 (12), 2457-2479.
https://doi.org/10.1021/acs.bioconjchem.1c00461

[9]. Rossin, R.; Robillard, M. S. Pretargeted imaging using bioorthogonal chemistry in mice. Current. Opinion. in. Chemical. Biology. 2014, 21, 161-169.
https://doi.org/10.1016/j.cbpa.2014.07.023

[10]. Best, M. D. Click Chemistry and Bioorthogonal Reactions: Unprecedented Selectivity in the Labeling of Biological Molecules. Biochemistry. 2009, 48 (28), 6571-6584.
https://doi.org/10.1021/bi9007726

[11]. Row, R. D.; Prescher, J. A. Constructing New Bioorthogonal Reagents and Reactions. Acc. Chem. Res. 2018, 51 (5), 1073-1081.
https://doi.org/10.1021/acs.accounts.7b00606

[12]. Smeenk, M. L.; Agramunt, J.; Bonger, K. M. Recent developments in bioorthogonal chemistry and the orthogonality within. Current Opinion in Chemical Biology, 2021, 60, 79-88. DOI= https://doi.org/10.1021/acs.accounts.7b00606
https://doi.org/10.1016/j.cbpa.2020.09.002

[13]. Devaraj, N. K. The Future of Bioorthogonal Chemistry. ACS. Cent. Sci. 2018, 4 (8), 952-959.
https://doi.org/10.1021/acscentsci.8b00251

[14]. Shih, H.; Kamber, D. N.; Prescher, J. A. Building better bioorthogonal reactions. Current. Opinion. in. Chemical. Biology. 2014, 21, 103-111.
https://doi.org/10.1016/j.cbpa.2014.07.002

[15]. Foley, H. N.; Stewart, J. A.; Kavunja, H. W.; Rundell, S. R.; Swarts, B. M. Bioorthogonal Chemical Reporters for Selective In Situ Probing of Mycomembrane Components in Mycobacteria. Angewandte. Chemie. 2016, 128 (6), 2093-2097.
https://doi.org/10.1002/ange.201509216

[16]. Lim, R. K.; Lin, Q. Bioorthogonal chemistry: recent progress and future directions. Chem. Commun. 2010, 46 (10), 1589-1600.
https://doi.org/10.1039/b925931g

[17]. Liong, M.; Fernandez-Suarez, M.; Issadore, D.; Min, C.; Tassa, C.; Reiner, T.; Fortune, S. M.; Toner, M.; Lee, H.; Weissleder, R. Specific Pathogen Detection Using Bioorthogonal Chemistry and Diagnostic Magnetic Resonance. Bioconjugate. Chem. 2011, 22 (12), 2390-2394.
https://doi.org/10.1021/bc200490r

[18]. Ramil, C. P.; Lin, Q. Bioorthogonal chemistry: strategies and recent developments. Chem. Commun. 2013, 49 (94), 11007-11022.
https://doi.org/10.1039/c3cc44272a

[19]. Scinto, S. L.; Bilodeau, D. A.; Hincapie, R.; Lee, W.; Nguyen, S. S.; Xu, M.; am Ende, C. W.; Finn, M. G.; Lang, K.; Lin, Q.; Pezacki, J. P.; Prescher, J. A.; Robillard, M. S.; Fox, J. M. Bioorthogonal chemistry. Nat. Rev. Methods. Primers. 2021, 1 (1), https://doi.org/10.1038/s43586-021-00028-z.
https://doi.org/10.1038/s43586-021-00028-z

[20]. Venrooij, K. R.; de Bondt, L.; Bonger, K. M. Mutually Orthogonal Bioorthogonal Reactions: Selective Chemistries for Labeling Multiple Biomolecules Simultaneously. Top. Curr. Chem. (Z). 2024, 382 (3), https://doi.org/10.1007/s41061-024-00467-8.
https://doi.org/10.1007/s41061-024-00467-8

[21]. Zhang, X.; Zhang, Y. Applications of Azide-Based Bioorthogonal Click Chemistry in Glycobiology. Molecules. 2013, 18 (6), 7145-7159.
https://doi.org/10.3390/molecules18067145

[22]. Flon, V.; Bénard, M.; Schapman, D.; Galas, L.; Renard, P.; Sabot, C. Fluorophore-Assisted Click Chemistry through Copper(I) Complexation. Biomolecules. 2020, 10 (4), 619.
https://doi.org/10.3390/biom10040619

[23]. Nguyen, S. S.; Prescher, J. A. Developing bioorthogonal probes to span a spectrum of reactivities. Nat. Rev. Chem. 2020, 4 (9), 476-489.
https://doi.org/10.1038/s41570-020-0205-0

[24]. Guadarrama Acosta, P.; López-Méndez, L. J.; Cabrera-Quiñones, N. C.; Cruz-Hernández, C. A. Versátil como ninguna, la química clic y su trascendencia en áreas diversas: de la ciencia de materiales a la investigación farmacéutica. Educ. Quím. 2023, 34, 60-69.
https://doi.org/10.22201/fq.18708404e.2023.1.84649

[25]. Deb, T.; Tu, J.; Franzini, R. M. Mechanisms and Substituent Effects of Metal-Free Bioorthogonal Reactions. Chem. Rev. 2021, 121 (12), 6850-6914.
https://doi.org/10.1021/acs.chemrev.0c01013

[26]. Smits, A. H.; Borrmann, A.; Roosjen, M.; van Hest, J. C.; Vermeulen, M. Click-MS: Tagless Protein Enrichment Using Bioorthogonal Chemistry for Quantitative Proteomics. ACS. Chem. Biol. 2016, 11 (12), 3245-3250.
https://doi.org/10.1021/acschembio.6b00520

[27]. Steward, K. F.; Eilers, B.; Tripet, B.; Fuchs, A.; Dorle, M.; Rawle, R.; Soriano, B.; Balasubramanian, N.; Copié, V.; Bothner, B.; Hatzenpichler, R. Metabolic Implications of Using BioOrthogonal Non-Canonical Amino Acid Tagging (BONCAT) for Tracking Protein Synthesis. Front. Microbiol. 2020, 11, https://doi.org/10.3389/fmicb.2020.00197.
https://doi.org/10.3389/fmicb.2020.00197

[28]. Murrey, H. E.; Judkins, J. C.; am Ende, C. W.; Ballard, T. E.; Fang, Y.; Riccardi, K.; Di, L.; Guilmette, E. R.; Schwartz, J. W.; Fox, J. M.; Johnson, D. S. Systematic Evaluation of Bioorthogonal Reactions in Live Cells with Clickable HaloTag Ligands: Implications for Intracellular Imaging. J. Am. Chem. Soc. 2015, 137 (35), 11461-11475.
https://doi.org/10.1021/jacs.5b06847

[29]. Agard, N. J.; Baskin, J. M.; Prescher, J. A.; Lo, A.; Bertozzi, C. R. A Comparative Study of Bioorthogonal Reactions with Azides. ACS. Chem. Biol. 2006, 1 (10), 644-648.
https://doi.org/10.1021/cb6003228

[30]. Mehak; Singh, G.; Singh, R.; Singh, G.; Stanzin, J.; Singh, H.; Kaur, G.; Singh, J. Clicking in harmony: exploring the bio-orthogonal overlap in click chemistry. RSC. Adv. 2024, 14 (11), 7383-7413.
https://doi.org/10.1039/D4RA00494A

[31]. Luu, T.; Gristwood, K.; Knight, J. C.; Jörg, M. Click Chemistry: Reaction Rates and Their Suitability for Biomedical Applications. Bioconjugate. Chem. 2024, 35 (6), 715-731.
https://doi.org/10.1021/acs.bioconjchem.4c00084

[32]. Kim, E.; Koo, H. Biomedical applications of copper-free click chemistry: in vitro, in vivo, and ex vivo. Chem. Sci. 2019, 10 (34), 7835-7851.
https://doi.org/10.1039/C9SC03368H

[33]. Handula, M.; Chen, K.; Seimbille, Y. IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications. Molecules. 2021, 26 (15), 4640.
https://doi.org/10.3390/molecules26154640

[34]. Zhang, Q.; Kuang, G.; Wang, L.; Duan, P.; Sun, W.; Ye, F. Designing Bioorthogonal Reactions for Biomedical Applications. Research. 2023, 6, https://doi.org/10.34133/research.0251.
https://doi.org/10.34133/research.0251

[35]. Poulou, E.; Hackenberger, C. P. Staudinger Ligation and Reactions - From Bioorthogonal Labeling to Next‐Generation Biopharmaceuticals. Israel. Journal. of. Chemistry. 2022, 63 (1-2), e202200057 https://doi.org/10.1002/ijch.202200057.
https://doi.org/10.1002/ijch.202200057

[36]. Dorn, R. S.; Prescher, J. A. Bioorthogonal Phosphines: Then and Now. Israel. Journal. of. Chemistry. 2022, 63 (1-2), e202200070 https://doi.org/10.1002/ijch.202200070.
https://doi.org/10.1002/ijch.202200070

[37]. Tiwari, V. K.; Jaiswal, M. K.; Rajkhowa, S.; Singh, S. K. Bioorthogonal Click Chemistry: Invention to Applications in Living Systems. In Materials Horizons: From Nature to Nanomaterials; Springer Nature Singapore: Singapore, 2024; pp 175-203 https://doi.org/ 10.1007/978-981-97-4596-8_6.
https://doi.org/10.1007/978-981-97-4596-8_6

[38]. Li, L.; Zhang, Z. Development and Applications of the Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) as a Bioorthogonal Reaction. Molecules. 2016, 21 (10), 1393.
https://doi.org/10.3390/molecules21101393

[39]. Wang, Y.; Hu, Q. Bio‐Orthogonal Chemistry in Cell Engineering. Advanced. NanoBiomed. Research. 2022, 3 (3), 2200128 https://doi.org/10.1002/anbr.202200128.
https://doi.org/10.1002/anbr.202200128

[40]. Rutjes, F. P.; Bonger, K. M.; Neumann, K. Bioorthogonal Chemistry at Radboud University: Past, Present and Future. Synlett. 2024, https://doi.org/10.1055/s-0042-1751569.
https://doi.org/10.1055/s-0042-1751569

[41]. Richter, D.; Lakis, E.; Piel, J. Site-specific bioorthogonal protein labelling by tetrazine ligation using endogenous β-amino acid dienophiles. Nat. Chem. 2023, 15 (10), 1422-1430.
https://doi.org/10.1038/s41557-023-01252-8

[42]. Liu, L.; Zhang, D.; Johnson, M.; Devaraj, N. K. Light-activated tetrazines enable precision live-cell bioorthogonal chemistry. Nat. Chem. 2022, 14 (9), 1078-1085.
https://doi.org/10.1038/s41557-022-00963-8

[43]. Pretze, M.; Kuchar, M.; Bergmann, R.; Steinbach, J.; Pietzsch, J.; Mamat, C. An Efficient Bioorthogonal Strategy Using CuAAC Click Chemistry for Radiofluorinations of SNEW Peptides and the Role of Copper Depletion. ChemMedChem. 2013, 8 (6), 935-945.
https://doi.org/10.1002/cmdc.201300053

[44]. Li, Y.; Fu, H. Bioorthogonal Ligations and Cleavages in Chemical Biology. ChemistryOpen. 2020, 9 (8), 835-853.
https://doi.org/10.1002/open.202000128

[45]. Verma, A. K.; Noumani, A.; Yadav, A. K.; Solanki, P. R. FRET Based Biosensor: Principle Applications Recent Advances and Challenges. Diagnostics. 2023, 13 (8), 1375.
https://doi.org/10.3390/diagnostics13081375

[46]. Bertozzi, C. R. A Decade of Bioorthogonal Chemistry. Acc. Chem. Res. 2011, 44 (9), 651-653.
https://doi.org/10.1021/ar200193f

[47]. Salmain, M.; Fischer‐Durand, N.; Rudolf, B. Bioorthogonal Conjugation of Transition Organometallic Complexes to Peptides and Proteins: Strategies and Applications. Eur. J. Inorg. Chem. 2019, 2020 (1), 21-35.
https://doi.org/10.1002/ejic.201900810

[48]. Mondal, M.; Unver, M. Y.; Pal, A.; Bakker, M.; Berrier, S. P.; Hirsch, A. K. Fragment‐Based Drug Design Facilitated by Protein‐Templated Click Chemistry: Fragment Linking and Optimization of Inhibitors of the Aspartic Protease Endothiapepsin. Chemistry. A. European. J. 2016, 22 (42), 14826-14830.
https://doi.org/10.1002/chem.201603001

[49]. Madegard, L.; Girard, M.; Yaw, B. R.; Porte, K.; Audisio, D.; Papot, S.; Taran, F. Bioorthogonal Drug Release from Nanometric Micelles in Living Cells. Chemistry. A. European. J. 2023, 29 (43), e202301359 https://doi.org/10.1002/chem.202301359.
https://doi.org/10.1002/chem.202301359

[50]. Willems, L. I.; van der Linden, W. A.; Li, N.; Li, K.; Liu, N.; Hoogendoorn, S.; van der Marel, G. A.; Florea, B. I.; Overkleeft, H. S. Bioorthogonal Chemistry: Applications in Activity-Based Protein Profiling. Acc. Chem. Res. 2011, 44 (9), 718-729.
https://doi.org/10.1021/ar200125k

[51]. Taiariol, L.; Chaix, C.; Farre, C.; Moreau, E. Click and Bioorthogonal Chemistry: The Future of Active Targeting of Nanoparticles for Nanomedicines?. Chem. Rev. 2021, 122 (1), 340-384.
https://doi.org/10.1021/acs.chemrev.1c00484

[52]. Dadová, J.; Vrábel, M.; Adámik, M.; Brázdová, M.; Pohl, R.; Fojta, M.; Hocek, M. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA-Protein Cross‐Linking. Chemistry. A. European. J. 2015, 21 (45), 16091-16102.
https://doi.org/10.1002/chem.201502209

[53]. Huang, R.; Hirschbiegel, C.; Lehot, V.; Liu, L.; Cicek, Y. A.; Rotello, V. M. Modular Fabrication of Bioorthogonal Nanozymes for Biomedical Applications. Advanced. Materials. 2023, 36 (10), 2300943 https://doi.org/10.1002/adma.202300943.
https://doi.org/10.1002/adma.202300943

[54]. Agarwal, P.; Beahm, B. J.; Shieh, P.; Bertozzi, C. R. Systemic Fluorescence Imaging of Zebrafish Glycans with Bioorthogonal Chemistry. Angewandte. Chemie. 2015, 127 (39), 11666-11672.
https://doi.org/10.1002/ange.201504249

[55]. Liu, H.; Wang, Y.; Zhou, X. Labeling and sequencing nucleic acid modifications using bio-orthogonal tools. RSC. Chem. Biol. 2022, 3 (8), 994-1007.
https://doi.org/10.1039/D2CB00087C

[56]. Wang, W.; Subramanian, P.; Martinazzoli, O.; Wu, J.; Ackermann, L. Glycopeptides by Linch‐Pin C−H Activations for Peptide‐Carbohydrate Conjugation by Manganese(I)‐Catalysis. Chemistry. A. European. J. 2019, 25 (45), 10585-10589.
https://doi.org/10.1002/chem.201902788

[57]. Amiri, A.; Abedanzadeh, S.; Davaeil, B.; Shaabani, A.; Moosavi-Movahedi, A. A. Protein click chemistry and its potential for medical applications. Quart. Rev. Biophys. 2024, 57, e6 https://doi.org/ 10.1017/S0033583524000027.
https://doi.org/10.1017/S0033583524000027

[58]. Laomeephol, C.; Tawinwung, S.; Suppipat, K.; Arunmanee, W.; Wang, Q.; Amie Luckanagul, J. Surface functionalization of virus-like particles via bioorthogonal click reactions for enhanced cell-specific targeting. International. Journal. of. Pharmaceutics. 2024, 660, 124332.
https://doi.org/10.1016/j.ijpharm.2024.124332

[59]. Ganz, D.; Harijan, D.; Wagenknecht, H. Labelling of DNA and RNA in the cellular environment by means of bioorthogonal cycloaddition chemistry. RSC. Chem. Biol. 2020, 1 (3), 86-97.
https://doi.org/10.1039/D0CB00047G

[60]. Delplace, V. Rethinking Click and Bioorthogonal Chemistry for Biomedical Applications. ACS. Materials. Lett. 2023, 6 (1), 153-158.
https://doi.org/10.1021/acsmaterialslett.3c01123

[61]. Amorim, A. C.; Burke, A. J. What is the future of click chemistry in drug discovery and development?. Expert. Opinion. on. Drug. Discovery. 2024, 19 (3), 267-280.
https://doi.org/10.1080/17460441.2024.2302151

[62]. Kim, S.; Ko, W.; Sung, B. H.; Kim, S. C.; Lee, H. S. Direct protein-protein conjugation by genetically introducing bioorthogonal functional groups into proteins. Bioorganic. &. Medicinal. Chemistry. 2016, 24 (22), 5816-5822.
https://doi.org/10.1016/j.bmc.2016.09.035

[63]. Liao, L. M.; Gray, R. A.; Martin, D. . Optimized Incorporation of Alkynyl Fatty Acid Analogs for the Detection of Fatty Acylated Proteins using Click Chemistry. JoVE. 2021, 170, e62107 https://doi.org/ 10.3791/62107.
https://doi.org/10.3791/62107

[64]. Algar, W. R.; Prasuhn, D. E.; Stewart, M. H.; Jennings, T. L.; Blanco-Canosa, J. B.; Dawson, P. E.; Medintz, I. L. The Controlled Display of Biomolecules on Nanoparticles: A Challenge Suited to Bioorthogonal Chemistry. Bioconjugate. Chem. 2011, 22 (5), 825-858.
https://doi.org/10.1021/bc200065z

[65]. Wang, Y.; Chen, Y.; Ji, D.; Huang, Y.; Huang, W.; Dong, X.; Yao, D.; Wang, D. Bio-orthogonal click chemistry strategy for PD-L1-targeted imaging and pyroptosis-mediated chemo-immunotherapy of triple-negative breast cancer. J. Nanobiotechnol. 2024, 22 (1), 461 https://doi.org/ 10.1186/s12951-024-02727-7.
https://doi.org/10.1186/s12951-024-02727-7

[66]. van Swieten, P. F.; Leeuwenburgh, M. A.; Kessler, B. M.; Overkleeft, H. S. Bioorthogonal organic chemistry in living cells: novel strategies for labeling biomolecules. Org. Biomol. Chem. 2005, 3 (1), 20-27.
https://doi.org/10.1039/b412558d

[67]. Demeter, O.; Fodor, E. A.; Kállay, M.; Mező, G.; Németh, K.; Szabó, P. T.; Kele, P. A Double‐Clicking Bis‐Azide Fluorogenic Dye for Bioorthogonal Self‐Labeling Peptide Tags. Chemistry. A. European. J. 2016, 22 (18), 6382-6388.
https://doi.org/10.1002/chem.201504939

[68]. Zhang, Y.; Üçüncü, M.; Gambardella, A.; Baibek, A.; Geng, J.; Zhang, S.; Clavadetscher, J.; Litzen, I.; Bradley, M.; Lilienkampf, A. Bioorthogonal Swarming: In Situ Generation of Dendrimers. J. Am. Chem. Soc. 2020, 142 (52), 21615-21621.
https://doi.org/10.1021/jacs.0c07869

[69]. Zhang, H.; Weingart, J.; Gruzdys, V.; Sun, X. Synthesis of an End-to-End Protein-Glycopolymer Conjugate via Bio-Orthogonal Chemistry. ACS. Macro. Lett. 2015, 5 (1), 73-77.
https://doi.org/10.1021/acsmacrolett.5b00805

[70]. Jalali, E.; Thorson, J. S. Enzyme-mediated bioorthogonal technologies: catalysts, chemoselective reactions and recent methyltransferase applications. Current. Opinion. in. Biotechnology. 2021, 69, 290-298.
https://doi.org/10.1016/j.copbio.2021.02.010

[71]. Wang, C.; Zhang, H.; Zhang, T.; Zou, X.; Wang, H.; Rosenberger, J. E.; Vannam, R.; Trout, W. S.; Grimm, J. B.; Lavis, L. D.; Thorpe, C.; Jia, X.; Li, Z.; Fox, J. M. Enabling In Vivo Photocatalytic Activation of Rapid Bioorthogonal Chemistry by Repurposing Silicon-Rhodamine Fluorophores as Cytocompatible Far-Red Photocatalysts. J. Am. Chem. Soc. 2021, 143 (28), 10793-10803.
https://doi.org/10.1021/jacs.1c05547

[72]. Chen, Y.; Triola, G.; Waldmann, H. Bioorthogonal Chemistry for Site-Specific Labeling and Surface Immobilization of Proteins. Acc. Chem. Res. 2011, 44 (9), 762-773.
https://doi.org/10.1021/ar200046h

[73]. Qin, G.; Yang, J.; Zhao, C.; Ren, J.; Qu, X. Manipulating complex chromatin folding via CRISPR-guided bioorthogonal chemistry. Proc. Natl. Acad. Sci. U.S.A. 2022, 119 (36), e2204725119 https://doi.org/10.1073/pnas.2204725119.
https://doi.org/10.1073/pnas.2204725119

[74]. Khan, I.; Seebald, L.; Robertson, N. M.; Yigit, M. V.; Royzen, M. Controlled in-cell activation of RNA therapeutics using bond-cleaving bio-orthogonal chemistry. Chem. Sci. 2017, 8 (8), 5705-5712.
https://doi.org/10.1039/C7SC01380A

[75]. Kenry; Liu, B. Bio-orthogonal Click Chemistry for In Vivo Bioimaging. Trends. in. Chemistry. 2019, 1 (8), 763-778.
https://doi.org/10.1016/j.trechm.2019.08.003

[76]. Ribéraud, M.; Porte, K.; Chevalier, A.; Madegard, L.; Rachet, A.; Delaunay-Moisan, A.; Vinchon, F.; Thuéry, P.; Chiappetta, G.; Champagne, P. A.; Pieters, G.; Audisio, D.; Taran, F. Fast and Bioorthogonal Release of Isocyanates in Living Cells from Iminosydnones and Cycloalkynes. J. Am. Chem. Soc. 2023, 145 (4), 2219-2229.
https://doi.org/10.1021/jacs.2c09865

[77]. Li, Y.; Wang, H.; Chen, Y.; Ding, L.; Ju, H. In Situ Glycan Analysis and Editing in Living Systems. JACS. Au. 2024, 4 (2), 384-401.
https://doi.org/10.1021/jacsau.3c00717

[78]. Chen, X.; Varki, A. User-friendly bioorthogonal reactions click to explore glycan functions in complex biological systems. Journal. of. Clinical. Investigation. 2023, 133 (6), https://doi.org/ 10.1172/JCI169408.
https://doi.org/10.1172/JCI169408

[79]. Lu, X.; McDowell, C. T.; Blaschke, C. R.; Liu, L.; Grimsley, G.; Wisniewski, L.; Gao, C.; Mehta, A. S.; Haab, B. B.; Angel, P. M.; Drake, R. R. Bioorthogonal Chemical Labeling Probes Targeting Sialic Acid Isomers for N-Glycan MALDI Imaging Mass Spectrometry of Tissues, Cells, and Biofluids. Anal. Chem. 2023, 95 (19), 7475-7486.
https://doi.org/10.1021/acs.analchem.2c04882

[80]. Kufleitner, M.; Haiber, L. M.; Wittmann, V. Metabolic glycoengineering - exploring glycosylation with bioorthogonal chemistry. Chem. Soc. Rev. 2023, 52 (2), 510-535.
https://doi.org/10.1039/D2CS00764A

[81]. Baalmann, M.; Neises, L.; Bitsch, S.; Schneider, H.; Deweid, L.; Werther, P.; Ilkenhans, N.; Wolfring, M.; Ziegler, M. J.; Wilhelm, J.; Kolmar, H.; Wombacher, R. A Bioorthogonal Click Chemistry Toolbox for Targeted Synthesis of Branched and Well‐Defined Protein-Protein Conjugates. Angewandte. Chemie. 2020, 132 (31), 12985-12993.
https://doi.org/10.1002/ange.201915079

[82]. Bickem, L. M.; Gavriel, K.; Neumann, K. Accessing Functionalized Tetrazines as Click Chemistry Tools: A Synthesis Guide for Chemists and Chemical Biologists. Eur. J. Org. Chem. 2023, 27 (3), e202301117 https://doi.org/10.1002/ejoc.202301117.
https://doi.org/10.1002/ejoc.202301117

[83]. Caulfield, C.; O'Shea, D. F.; Wu, D. Dynamic bioorthogonal imaging using a tetrazine NIR-AZA fluorogenic probe. Tetrahedron 2023, 138, 133387.
https://doi.org/10.1016/j.tet.2023.133387

[84]. Xing, M.; Wang, S.; Cui, F.; Liu, H.; Zhang, X.; Gao, Z.; Ying, W.; Shi, E. Comprehensive insight on protein modification by V‐type agent: A chemical proteomic approach employing bioorthogonal reaction. Proteomics. 2023, 24 (1-2), 2300039 https://doi.org/ 10.1002/pmic.202300039.
https://doi.org/10.1002/pmic.202300039

[85]. Dudchak, R.; Podolak, M.; Holota, S.; Szewczyk-Roszczenko, O.; Roszczenko, P.; Bielawska, A.; Lesyk, R.; Bielawski, K. Click chemistry in the synthesis of antibody-drug conjugates. Bioorg. Chem. 2024, 143, 106982.
https://doi.org/10.1016/j.bioorg.2023.106982

[86]. Kondengadan, S. M.; Bansal, S.; Yang, C.; Liu, D.; Fultz, Z.; Wang, B. Click chemistry and drug delivery: A bird's-eye view. Acta. Pharmaceutica. Sinica. B. 2023, 13 (5), 1990-2016.
https://doi.org/10.1016/j.apsb.2022.10.015

[87]. Dong, Y.; Tu, Y.; Wang, K.; Xu, C.; Yuan, Y.; Wang, J. A General Strategy for Macrotheranostic Prodrug Activation: Synergy between the Acidic Tumor Microenvironment and Bioorthogonal Chemistry. Angew. Chem. Int. Ed. 2020, 59 (18), 7168-7172.
https://doi.org/10.1002/anie.201913522

[88]. Min, Q.; Ji, X. Bioorthogonal Bond Cleavage Chemistry for On-demand Prodrug Activation: Opportunities and Challenges. J. Med. Chem. 2023, 66 (24), 16546-16567.
https://doi.org/10.1021/acs.jmedchem.3c01459

[89]. Wu, D.; Yang, K.; Zhang, Z.; Feng, Y.; Rao, L.; Chen, X.; Yu, G. Metal-free bioorthogonal click chemistry in cancer theranostics. Chem. Soc. Rev. 2022, 51 (4), 1336-1376.
https://doi.org/10.1039/D1CS00451D

[90]. Wang, W.; Zhang, X.; Huang, R.; Hirschbiegel, C.; Wang, H.; Ding, Y.; Rotello, V. M. In situ activation of therapeutics through bioorthogonal catalysis. Advanced. Drug. Delivery. Reviews. 2021, 176, 113893.
https://doi.org/10.1016/j.addr.2021.113893

[91]. Sapsford, K. E.; Algar, W. R.; Berti, L.; Gemmill, K. B.; Casey, B. J.; Oh, E.; Stewart, M. H.; Medintz, I. L. Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chem. Rev. 2013, 113 (3), 1904-2074.
https://doi.org/10.1021/cr300143v

[92]. Yao, Q.; Lin, F.; Lu, C.; Zhang, R.; Xu, H.; Hu, X.; Wu, Z.; Gao, Y.; Chen, P. R. A Dual-Mechanism Targeted Bioorthogonal Prodrug Therapy. Bioconjugate. Chem. 2023, 34 (12), 2255-2262.
https://doi.org/10.1021/acs.bioconjchem.3c00404

[93]. Chen, J.; Ji, P.; Gnawali, G.; Chang, M.; Gao, F.; Xu, H.; Wang, W. Building bioorthogonal click-release capable artificial receptors on cancer cell surface for imaging, drug targeting and delivery. Acta. Pharmaceutica. Sinica. B. 2023, 13 (6), 2736-2746.
https://doi.org/10.1016/j.apsb.2022.12.018

[94]. Tiwari, V. K.; Jaiswal, M. K.; Rajkhowa, S.; Singh, S. K. Click Chemistry and Bioorthogonal Chemistry: General Consideration from Discovery to Applications. Materials. Horizons:. From. Nature. to. Nanomaterials. 2024, 1-42.
https://doi.org/10.1007/978-981-97-4596-8_1

[95]. Idiago-López, J.; Moreno-Antolín, E.; de la Fuente, J. M.; Fratila, R. M. Nanoparticles and bioorthogonal chemistry joining forces for improved biomedical applications. Nanoscale. Adv. 2021, 3 (5), 1261-1292.
https://doi.org/10.1039/D0NA00873G

[96]. Zhang, R.; Gao, J.; Zhao, G.; Zhou, L.; Kong, F.; Jiang, T.; Jiang, H. Tetrazine bioorthogonal chemistry makes nanotechnology a powerful toolbox for biological applications. Nanoscale. 2023, 15 (2), 461-469.
https://doi.org/10.1039/D2NR06056F

[97]. Pei, X.; Luo, Z.; Qiao, L.; Xiao, Q.; Zhang, P.; Wang, A.; Sheldon, R. A. Putting precision and elegance in enzyme immobilisation with bio-orthogonal chemistry. Chem. Soc. Rev. 2022, 51 (16), 7281-7304.
https://doi.org/10.1039/D1CS01004B

[98]. Zeitouni, F. S.; Amira, M. F.; El-Subruiti, G. M.; Younes, G. O. Comparison of the leaving groups during the study of the aquation of halopentaammine cobalt(III) complex in tartarate at different percentage of tert-butanol. Eur. J. Chem. 2018, 9 (3), 228-235.
https://doi.org/10.5155/eurjchem.9.3.228-235.1728

[99]. Šlachtová, V.; Motornov, V.; Beier, P.; Vrabel, M. Bioorthogonal Cycloadditions of C3‐Trifluoromethylated 1,2,4‐Triazines with trans‐Cyclooctenes. Chemistry. A. European. J. 2024, 30 (40), e202400839 https://doi.org/10.1002/chem.202400839.
https://doi.org/10.1002/chem.202400839

[100]. van de L'Isle, M.; Croke, S.; Valero, T.; Unciti‐Broceta, A. Development of Biocompatible Cu(I)‐Microdevices for Bioorthogonal Uncaging and Click Reactions. Chemistry. A. European. J. 2024, 30 (30), e202400611 https://doi.org/10.1002/chem.202400611.
https://doi.org/10.1002/chem.202400611

[101]. Rahim, M. K.; Kota, R.; Lee, S.; Haun, J. B. Bioorthogonal chemistries for nanomaterial conjugation and targeting. Nanotechnology. Reviews. 2013, 2 (2), 215-227.
https://doi.org/10.1515/ntrev-2012-0083

[102]. Giltrap, A. M.; Yuan, Y.; Davis, B. G. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem. Rev. 2024, 124 (3), 889-928.
https://doi.org/10.1021/acs.chemrev.3c00579

[103]. Beha, M. J.; Kim, J.; Im, S. H.; Kim, Y.; Yang, S.; Lee, J.; Nam, Y. R.; Lee, H.; Park, H.; Chung, H. J. Bioorthogonal CRISPR/Cas9‐Drug Conjugate: A Combinatorial Nanomedicine Platform. Advanced. Science. 2023, 10 (27), 2302253 https://doi.org/10.1002/advs.202302253.
https://doi.org/10.1002/advs.202302253

[104]. Fan, X.; Li, J.; Chen, P. R. Bioorthogonal chemistry in living animals. National. Science. Review. 2017, 4 (3), 300-302.
https://doi.org/10.1093/nsr/nwx010

[105]. Battigelli, A.; Almeida, B.; Shukla, A. Recent Advances in Bioorthogonal Click Chemistry for Biomedical Applications. Bioconjugate. Chem. 2022, 33 (2), 263-271.
https://doi.org/10.1021/acs.bioconjchem.1c00564

[106]. Lim, R. K.; Lin, Q. Bioorthogonal chemistry: a covalent strategy for the study of biological systems. Sci. China. Chem. 2010, 53 (1), 61-70.
https://doi.org/10.1007/s11426-010-0020-4

[107]. Lossouarn, A.; Renard, P.; Sabot, C. Tailored Bioorthogonal and Bioconjugate Chemistry: A Source of Inspiration for Developing Kinetic Target-Guided Synthesis Strategies. Bioconjugate. Chem. 2020, 32 (1), 63-72.
https://doi.org/10.1021/acs.bioconjchem.0c00568

[108]. Haun, R. S.; Quick, C. M.; Siegel, E. R.; Raju, I.; Mackintosh, S. G.; Tackett, A. J. Bioorthogonal Labeling Cell-Surface Proteins Expressed in Pancreatic Cancer Cells to Identify Potential Diagnostic/Therapeutic Biomarkers. Cancer Biol. Ther. 2015, 16 (10), 1557-1565.
https://doi.org/10.1080/15384047.2015.1071740

[109]. Hao, Y.; Song, J.; Ravikrishnan, A.; Dicker, K. T.; Fowler, E. W.; Zerdoum, A. B.; Li, Y.; Zhang, H.; Rajasekaran, A. K.; Fox, J. M.; Jia, X. Rapid Bioorthogonal Chemistry Enables in Situ Modulation of the Stem Cell Behavior in 3D without External Triggers. ACS. Appl. Mater. Interfaces. 2018, 10 (31), 26016-26027.
https://doi.org/10.1021/acsami.8b07632

[110]. Strmiskova, M.; Josephson, J. D.; Toudic, C.; Pezacki, J. P. Optimized Bioorthogonal Non-canonical Amino Acid Tagging to Identify Serotype-Specific Biomarkers in Verotoxigenic Escherichia coli. ACS. Infect. Dis. 2023, 9 (4), 856-863.
https://doi.org/10.1021/acsinfecdis.2c00548

[111]. Segawa, S.; He, X.; Tang, B. Z. Metal‐free click and bioorthogonal reactions of aggregation‐induced emission probes for lighting up living systems. Luminescence. 2023, 39 (1), e4619 https://doi.org/10.1002/bio.4619.
https://doi.org/10.1002/bio.4619

[112]. Wang, Y.; Torres‐García, D.; Mostert, T. P.; Reinalda, L.; Van Kasteren, S. I. A Bioorthogonal Dual Fluorogenic Probe for the Live‐Cell Monitoring of Nutrient Uptake by Mammalian Cells. Angew. Chem. Int. Ed. 2024, 63 (32), e202401733 https://doi.org/ 10.1002/anie.202401733.
https://doi.org/10.1002/anie.202401733

[113]. Kozma, E.; Kele, P. Bioorthogonal Reactions in Bioimaging. Top. Curr. Chem. (Z). 2024, 382 (1), https://doi.org/10.1007/s41061-024-00452-1.
https://doi.org/10.1007/s41061-024-00452-1

[114]. Niu, W.; Guo, J. Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology. Chem. Rev. 2024, 124 (18), 10577-10617.
https://doi.org/10.1021/acs.chemrev.3c00938

[115]. Li, X.; Weller, S.; Clergeaud, G.; Andresen, T. L. A versatile method for conjugating lipid nanoparticles on T cells through combination of click chemistry and metabolic glycoengineering. Biotechnology. Journal. 2024, 19 (1), 2300339 https://doi.org/10.1002/biot.202300339.
https://doi.org/10.1002/biot.202300339

[116]. Tiwari, V. K.; Jaiswal, M. K.; Rajkhowa, S.; Singh, S. K. Click Chemistry in Nucleic Acids. Materials. Horizons:. From. Nature. to. Nanomaterials. 2024, 437-478.
https://doi.org/10.1007/978-981-97-4596-8_14

[117]. Ma, M.; Yuan, W.; Zhong, W.; Cheng, Y.; Yao, H.; Zhao, Y. In-situ activation of biomimetic single-site bioorthogonal nanozyme for tumor-specific combination therapy. Biomaterials. 2025, 312, 122755.
https://doi.org/10.1016/j.biomaterials.2024.122755

[118]. Paioti, P. H.; Lounsbury, K. E.; Romiti, F.; Formica, M.; Bauer, V.; Zandonella, C.; Hackey, M. E.; del Pozo, J.; Hoveyda, A. H. Click processes orthogonal to CuAAC and SuFEx forge selectively modifiable fluorescent linkers. Nat. Chem. 2023, 16 (3), 426-436.
https://doi.org/10.1038/s41557-023-01386-9

[119]. Cai, E.; Chen, Y.; Zhang, J.; Li, H.; Li, Y.; Yan, S.; He, Z.; Yuan, Q.; Wang, P. Imaging specific proteins in living cells with small unnatural amino acid attached Raman reporters. Analyst 2024, 149, 5476-5481.
https://doi.org/10.1039/D4AN00758A

[120]. Bednarek, C.; Schepers, U.; Thomas, F.; Bräse, S. Bioconjugation in materials science. Adv. Funct. Mater. 2024, 34, 2303613.
https://doi.org/10.1002/adfm.202303613

[121]. Tiwari, V. K.; Jaiswal, M. K.; Rajkhowa, S.; Singh, S. K. Click Chemistry and Bioorthogonal Chemistry: General Consideration from Discovery to Applications. In Materials Horizons: From Nature to Nanomaterials; Springer Nature Singapore: Singapore, 2024; pp 1-42.
https://doi.org/10.1007/978-981-97-4596-8_1

[122]. Patterson, D. M.; Nazarova, L. A.; Prescher, J. A. Finding the Right (Bioorthogonal) Chemistry. ACS. Chem. Biol. 2014, 9 (3), 592-605.
https://doi.org/10.1021/cb400828a

[123]. Kuba, W.; Sohr, B.; Keppel, P.; Svatunek, D.; Humhal, V.; Stöger, B.; Goldeck, M.; Carlson, J. C.; Mikula, H. Oxidative Desymmetrization Enables the Concise Synthesis of a trans‐Cyclooctene Linker for Bioorthogonal Bond Cleavage. Chemistry. A. European. J. 2022, 29 (3), e202203069 https://doi.org/10.1002/chem.202203069.
https://doi.org/10.1002/chem.202203069

[124]. Yang, M.; Li, J.; Chen, P. R. Transition metal-mediated bioorthogonal protein chemistry in living cells. Chem. Soc. Rev. 2014, 43 (18), 6511-6526.
https://doi.org/10.1039/C4CS00117F

[125]. Si, R.; Hai, P.; Zheng, Y.; Wang, J.; Zhang, Q.; Li, Y.; Pan, X.; Zhang, J. Discovery of intracellular self-assembly protein degraders driven by tumor-specific activatable bioorthogonal reaction. European. Journal. of. Medicinal. Chemistry. 2023, 257, 115497.
https://doi.org/10.1016/j.ejmech.2023.115497

[126]. Mitry, M. M.; Greco, F.; Osborn, H. M. In Vivo Applications of Bioorthogonal Reactions: Chemistry and Targeting Mechanisms. Chemistry. A. European. J. 2023, 29 (20), e202203942 https://doi.org/10.1002/chem.202203942.
https://doi.org/10.1002/chem.202203942

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).