European Journal of Chemistry

Redox behavior of aliphatic hydroxamic acid and its iron(III) complexes

Crossmark


Main Article Content

Ibrahima Sory Sow
Marie Vandeput
Michel Gelbcke
François Dufrasne

Abstract

N-Hydroxydodecanamide (HA12) and its trihydroxamato-iron(III) complex (HA12Fe3) have been synthesized and characterized by various methods including structural determination by single crystal X-ray diffraction and cyclic voltammetry (CV). In order to complete our previous CV study on HA12 and its complexes, our aim was to investigate the variation in redox potential upon changes in concentration and pH. The redox couples previously observed with HA12 and HA12Fe3 at 100 µM shifts towards less positive values when the concentration or pH of the solution increases. These results indicate that oxidation is easier when concentrations are higher and in basic media. The slopes of -0.06 V/pH (in agreement with the theoretical data) and -0.077 V/pH (slightly higher than the theoretical slope) were observed for HA12 and HA12Fe3, respectively. This observation would explain the slower oxidation of HA12Fe3 than HA12.


icon graph This Abstract was viewed 107 times | icon graph Article PDF downloaded 53 times

How to Cite
(1)
Sow, I. S.; Vandeput, M.; Gelbcke, M.; Dufrasne, F. Redox Behavior of Aliphatic Hydroxamic Acid and Its iron(III) Complexes. Eur. J. Chem. 2024, 15, 307-312.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Muri, E.; Nieto, M.; Williamson, J. Hydroxamic Acids as Pharmacological Agents: An Update. Med. Chem. Rev. - Online 2004, 1 (4), 385-394.
https://doi.org/10.2174/1567203043401572

[2]. Cinquantini, A.; Zanello, P.; Mazzocchin, G. Voltammetric behaviour of hydroxamic acids. J. Electroanal. Chem. Interfacial Electrochem. 1977, 80 (2), 387-393.
https://doi.org/10.1016/S0022-0728(77)80060-0

[3]. Alemu, H.; Chandravanshi, B. S. Electrochemical Behavior of N-Phenylcinnamohydroxamic Acid Incorporated into Carbon Paste Electrode and Adsorbed Metal Ions. Electroanalysis 1998, 10 (2), 116-120.
https://doi.org/10.1002/(SICI)1521-4109(199802)10:2<116::AID-ELAN116>3.0.CO;2-B

[4]. Nigović, B.; Kujundžić, N. Electrochemical behavior of iron(III) complexes with aminohydroxamic acids. Polyhedron 2002, 21 (16), 1661-1666.
https://doi.org/10.1016/S0277-5387(02)01024-0

[5]. Carrott, M. J.; Fox, O. D.; LeGurun, G.; Jones, C. J.; Mason, C.; Taylor, R. J.; Andrieux, F. P.; Boxall, C. Oxidation-reduction reactions of simple hydroxamic acids and plutonium(IV) ions in nitric acid. Radiochim. Acta 2008, 96 (6), 333-343.
https://doi.org/10.1524/ract.2008.1502

[6]. Sow, I. S.; Gelbcke, M.; Meyer, F.; Vandeput, M.; Marloye, M.; Basov, S.; Van Bael, M. J.; Berger, G.; Robeyns, K.; Hermans, S.; Yang, D.; Fontaine, V.; Dufrasne, F. Synthesis and biological activity of iron(II), iron(III), nickel(II), copper(II) and zinc(II) complexes of aliphatic hydroxamic acids. J. Coord. Chem. 2023, 76 (1), 76-105.
https://doi.org/10.1080/00958972.2023.2166407

[7]. Failes, T. W.; Hambley, T. W. Crystal Structures of Tris(hydroxamato) Complexes of Iron(III). Aust. J. Chem. 2000, 53 (10), 879.
https://doi.org/10.1071/CH00118

[8]. McSweeney, C.; Hutchinson, S.; Harris, S.; Glennon, J. Supercritical fluid chromatography and extraction of Fe(III) with hydroxamic acids. Anal. Chim. Acta 1997, 346 (1), 93-99.
https://doi.org/10.1016/S0003-2670(97)00240-7

[9]. Nematollahi, D.; Shayani-Jam, H.; Alimoradi, M.; Niroomand, S. Electrochemical oxidation of acetaminophen in aqueous solutions: Kinetic evaluation of hydrolysis, hydroxylation and dimerization processes. Electrochim. Acta 2009, 54 (28), 7407-7415.
https://doi.org/10.1016/j.electacta.2009.07.077

[10]. Afkhami, A.; Nematollahi, D.; Khalafi, L.; Rafiee, M. Kinetic study of the oxidation of some catecholamines by digital simulation of cyclic voltammograms. Int J. of Chemical Kinetics 2004, 37 (1), 17-24.
https://doi.org/10.1002/kin.20046

[11]. Jindal, V. K.; Agrawal, M. C.; Mushran, S. P. Mechanism of the oxidation of hydroxylamine by ferricyanide. J. Chem. Soc., A. 1970, 2060-2062.
https://doi.org/10.1039/j19700002060

[12]. Onomura, O. Electrochemistry of Hydroxylamines, Oximes and Hydroxamic Acids. Patai's Chemistry of Functional Groups. John Wiley & Sons, April 15, 2010.
https://doi.org/10.1002/9780470682531.pat0462

[13]. Mengel, A. K.; Förster, C.; Breivogel, A.; Mack, K.; Ochsmann, J. R.; Laquai, F.; Ksenofontov, V.; Heinze, K. A Heteroleptic Push-Pull Substituted Iron(II) Bis(tridentate) Complex with Low‐Energy Charge‐Transfer States. Chemistry A. European J. 2014, 21 (2), 704-714.
https://doi.org/10.1002/chem.201404955

[14]. Spasojević, I.; Armstrong, S. K.; Brickman, T. J.; Crumbliss, A. L. Electrochemical Behavior of the Fe(III) Complexes of the Cyclic Hydroxamate Siderophores Alcaligin and Desferrioxamine E. Inorg. Chem. 1999, 38 (3), 449-454.
https://doi.org/10.1021/ic980635n

[15]. Caetano, L. G.; Takeuchi, R. M.; Santos, A. L.; de Oliveira, M. F.; Stradiotto, N. R. Voltammetric determination of ethyl acetate in ethanol fuel using a Fe3+/Nafion®-coated glassy carbon electrode. Fuel 2013, 106, 837-842.
https://doi.org/10.1016/j.fuel.2012.10.045

[16]. Abu-Dari, K.; Cooper, S. R.; Raymond, K. N. Coordination chemistry of microbial iron transport compounds. 15. Electrochemistry and magnetic susceptibility of iron(III)-hydroxamate and -thiohydroxamate complexes. Inorg. Chem. 1978, 17 (12), 3394-3397.
https://doi.org/10.1021/ic50190a019

Supporting Agencies

Université libre de Bruxelles, 1050 Brussels, Belgium, Minister of Higher Education and Scientific Research of Guinea, Guinea
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).