European Journal of Chemistry

Macromolecular crowder polyethylene glycol delayed the aggregation of chromium-treated bovine serum albumin

Crossmark


Main Article Content

Samra Hasan
Nazim Husain
Neha Kausar Ansari
Aabgeena Naeem

Abstract

The structure of proteins is greatly affected by various interacting xenobiotic and lead to the formation of aggregates. Chromium metal, which was initially considered innocent as a nutrient, has been found to induce some abnormalities in the human body recently. Aggregate formation is associated with the occurrence of pathological conditions such as systemic amyloidosis, cystic fibrosis, etc. To have a deeper insight into aggregation susceptibility and structural stability of bovine serum albumin on treating with hexavalent chromium Cr(VI) and the consequences of macromolecular crowding on the native conformation of the protein, the chromium concentration ranged from 0-100 µM where K2Cr2O7 was used as the Cr (VI) source. Disruption of native bovine serum albumin (BSA) assembly and formation of aggregates at 50 µM Cr(VI) was unveiled by increased turbidity and fluorescence at 350 nm, reduced intrinsic fluorescence with 10 nm and 20 nm blue shifted enhanced ANS spectra respectively. Significantly enhanced, the ThT fluorescence alone side sigmoidal curve with no lag phase and a 10 nm red shift in congo red spectra sustained conformational changes and indicated aggregation of BSA upon incubation with Cr(VI). Circular dichroism (CD) results showed the disappearance of negative minima at 208 and 222 nm, which confirms the transition of native helical structure to non-native beta sheets. Furthermore, the comet assay showed that Cr-treated BSA aggregates were found to be genotoxic, as an increase in tail length of 11.3 μm had been observed. Crowded microenvironment was mimicked by PEG-4000; a polyethylene glycol, was witnessed to prominently preserve conformational stability of BSA upon treatment with Cr(VI) as all results observed were close to that of native. The decrease in turbidity, fluorescence at 350 nm accompanied by a reduction in 8-anilinonaphthalene-1-sulfonic acid (ANS) and thioflavin T (ThT) fluorescence further verified the inhibition of aggregate formation in the presence of PEG-4000. Furthermore, the increased intrinsic fluorescence, decreased congo red absorption and reduced tail length of 3.4 μm in the comet assay were in co-relation with the above data. The macromolecular crowder PEG-4000 was efficient in delaying the aggregation of Cr-treated BSA, as the kinetics showed a sigmoidal curve with the lag phase. Based on these findings, it could be hypothesized that the native structure was maximally retained in the presence of 100 mg/mL of PEG-4000, demonstrating braking of aggregate formation. It can be established that explicit consideration of macromolecular crowding using a relevant range of inert crowding agents must be a prerequisite for studies concerning intracellular conformational behavior of proteins and enhanced their stability under stress conditions and devising protein formulations with enhanced conformational stability.


icon graph This Abstract was viewed 268 times | icon graph Article PDF downloaded 76 times

How to Cite
(1)
Hasan, S.; Husain, N.; Ansari, N. K.; Naeem, A. Macromolecular Crowder Polyethylene Glycol Delayed the Aggregation of Chromium-Treated Bovine Serum Albumin. Eur. J. Chem. 2025, 16, 27-36.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Jan, A.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci. 2015, 16 (12), 29592-29630.
https://doi.org/10.3390/ijms161226183

[2]. Langard, S.; Costa, M. Chromium, G.F. Nordberg, B.A. Fowler, M. Norberg, L. Friberg (Eds.), Handbook on the Toxicology of Metals (2007), pp. 487-510
https://doi.org/10.1016/B978-012369413-3/50079-3

[3]. Costa, M.; Klein, C. B. Toxicity and Carcinogenicity of Chromium Compounds in Humans. Crit. Rev. Toxicol. 2006, 36 (2), 155-163.
https://doi.org/10.1080/10408440500534032

[4]. Dayan, A. D.; Paine, A. J. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000. Hum. Exp. Toxicol. 2001, 20 (9), 439-451.
https://doi.org/10.1191/096032701682693062

[5]. Sharma, P.; Singh, S. P.; Parakh, S. K.; Tong, Y. W. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 2022, 13 (3), 4923-4938.
https://doi.org/10.1080/21655979.2022.2037273

[6]. Shin, D. Y.; Lee, S. M.; Jang, Y.; Lee, J.; Lee, C. M.; Cho, E.; Seo, Y. R. Adverse Human Health Effects of Chromium by Exposure Route: A Comprehensive Review Based on Toxicogenomic Approach. Int. J. Mol. Sci. 2023, 24 (4), 3410.
https://doi.org/10.3390/ijms24043410

[7]. Coogan, T. P.; Squibb, K. S.; Motz, J.; Kinney, P. L.; Costa, M. Distribution of chromium within cells of the blood. Toxicol. Appl. Pharmacol. 1991, 108 (1), 157-166.
https://doi.org/10.1016/0041-008X(91)90279-N

[8]. Wilbur, S.; Abadin, H.; Fay, M.; Yu, D.; Tencza B.; Ingerman, L.; Klotzbach, J.; Shelly J. Toxicological Profile for Chromium. Agency for Toxic Substances and Disease Registry (US), Atlanta (GA), 2012.

https://www.atsdr.cdc.gov/toxprofiles/tp7.pdf

[9]. Kragh-Hansen, U. Molecular aspects of ligand binding to serum albumin. Pharmacological Reviews 1981, 33, 17-53. PMID: 7027277.
https://doi.org/10.1016/S0031-6997(25)06849-8

[10]. Carter, D. C.; Ho, J. X. Structure of serum albumin. Adv. Protein Chem. 1994, 45, 153-203.
https://doi.org/10.1016/S0065-3233(08)60640-3

[11]. Karnieli, O.; Friedner, O. M.; Allickson, J. G.; Zhang, N.; Jung, S.; Fiorentini, D.; Abraham, E.; Eaker, S. S.; Yong, t. K.; Chan, A.; Griffiths, S.; Wehn, A. K.; Oh, S.; Karnieli, O. A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy 2017, 19 (2), 155-169.
https://doi.org/10.1016/j.jcyt.2016.11.011

[12]. Arasteh, A.; Farahi, S.; Habibi-Rezaei, M.; Moosavi-Movahedi, A. A. Glycated albumin: an overview of the In Vitro models of an In Vivo potential disease marker. J. Diabetes Metab. Disord. 2014, 13 (1).
https://doi.org/10.1186/2251-6581-13-49

[13]. Yıldız, A.; Kara, A. A.; Acartürk, F. Peptide-protein based nanofibers in pharmaceutical and biomedical applications. Int. J. Biol. Macromol. 2020, 148, 1084-1097.
https://doi.org/10.1016/j.ijbiomac.2019.12.275

[14]. Peters, T. Serum Albumin. Adv. Protein Chem. 1985, 161-245.
https://doi.org/10.1016/S0065-3233(08)60065-0

[15]. Hirayama, K.; Akashi, S.; Furuya, M.; Fukuhara, K. Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and frit-FAB LC/MS. Biochem. Biophys. Res. Commun. 1990, 173 (2), 639-646.
https://doi.org/10.1016/S0006-291X(05)80083-X

[16]. Siddiqui, G. A.; Naeem, A. Connecting the Dots: Macromolecular Crowding and Protein Aggregation. J. Fluoresc. 2022, 33 (1), 1-11.
https://doi.org/10.1007/s10895-022-03082-2

[17]. Ellis, R. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 2001, 11 (1), 114-119.
https://doi.org/10.1016/S0959-440X(00)00172-X

[18]. Miklos, A. C.; Sarkar, M.; Wang, Y.; Pielak, G. J. Protein Crowding Tunes Protein Stability. J. Am. Chem. Soc. 2011, 133 (18), 7116-7120.
https://doi.org/10.1021/ja200067p

[19]. Zhou, H.; Rivas, G.; Minton, A. P. Macromolecular Crowding and Confinement: Biochemical, Biophysical, and Potential Physiological Consequences. Annu. Rev. Biophys. 2008, 37 (1), 375-397.
https://doi.org/10.1146/annurev.biophys.37.032807.125817

[20]. Wang, W. Protein aggregation and its inhibition in biopharmaceutics. Int. J. Pharm. 2005, 289 (1-2), 1-30.
https://doi.org/10.1016/j.ijpharm.2004.11.014

[21]. Veronese, F. M.; Mero, A. The Impact of PEGylation on Biological Therapies. BioDrugs 2008, 22 (5), 315-329.
https://doi.org/10.2165/00063030-200822050-00004

[22]. Frokjaer, S.; Otzen, D. E. Protein drug stability: a formulation challenge. Nat. Rev. Drug Discov. 2005, 4 (4), 298-306.
https://doi.org/10.1038/nrd1695

[23]. Hasan, S.; Naeem, A. The modulation of structural stability of horseradish peroxidase as a consequence of macromolecular crowding. J. Mol. Recognition 2021, 34 (10).
https://doi.org/10.1002/jmr.2902

[24]. Lintner, K.; Fermandjian, S.; St. Pierre, S.; Regoli, D. Proton NMR study of the conformation of bradykinin: pH titration. Biochem. Biophys. Res. Commun. 1979, 91 (3), 803-811.
https://doi.org/10.1016/0006-291X(79)91951-X

[25]. Eftink, M. R.; Ghiron, C. A. Fluorescence quenching studies with proteins. Anal. Biochem. 1981, 114 (2), 199-227.
https://doi.org/10.1016/0003-2697(81)90474-7

[26]. Hawe, A.; Sutter, M.; Jiskoot, W. Extrinsic Fluorescent Dyes as Tools for Protein Characterization. Pharm. Res. 2008, 25 (7), 1487-1499.
https://doi.org/10.1007/s11095-007-9516-9

[27]. Hudson, S. A.; Ecroyd, H.; Kee, T. W.; Carver, J. A. The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. FEBS J. 2009, 276 (20), 5960-5972.
https://doi.org/10.1111/j.1742-4658.2009.07307.x

[28]. Hasan, S.; Fatma, S.; Zaman, M.; Khan, R. H.; Naeem, A. Carboxylic acids of different nature induces aggregation of hemoglobin. Int. J. Biol. Macromol. 2018, 118, 1584-1593.
https://doi.org/10.1016/j.ijbiomac.2018.07.003

[29]. Wang, S. S.; Chen, P.; Hung, Y. Effects of p-benzoquinone and melatonin on amyloid fibrillogenesis of hen egg-white lysozyme. J. Mol. Catal. B: Enzym. 2006, 43 (1-4), 49-57.
https://doi.org/10.1016/j.molcatb.2006.06.006

[30]. Chiti, F.; Taddei, N.; Baroni, F.; Capanni, C.; Stefani, M.; Ramponi, G.; Dobson, C. M. Kinetic partitioning of protein folding and aggregation. Nat. Struct. Biol. 2002, 9 (2), 137-143.
https://doi.org/10.1038/nsb752

[31]. Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1 (6), 2876-2890.
https://doi.org/10.1038/nprot.2006.202

[32]. Singh, N. P.; McCoy, M. T.; Tice, R. R.; Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175 (1), 184-191.
https://doi.org/10.1016/0014-4827(88)90265-0

[33]. Anand, U.; Jash, C.; Mukherjee, S. Protein unfolding and subsequent refolding: a spectroscopic investigation. Phys. Chem. Chem. Phys. 2011, 13 (45), 20418.
https://doi.org/10.1039/c1cp21759c

[34]. Liu, Y.; Liu, L.; Chen, M.; Zhang, Q. Double thermal transitions of type I collagen in acidic solution. J. Biomol. Struct. Dyn. 2013, 31 (8), 862-873.
https://doi.org/10.1080/07391102.2012.715042

[35]. Zimmerman, S. B.; Minton, A. P. Macromolecular Crowding: Biochemical, Biophysical, and Physiological Consequences. Annu. Rev. Biophys. Biomol. Struct. 1993, 22 (1), 27-65.
https://doi.org/10.1146/annurev.bb.22.060193.000331

[36]. Minton, A. P. The Influence of Macromolecular Crowding and Macromolecular Confinement on Biochemical Reactions in Physiological Media. J. Biol. Chem. 2001, 276 (14), 10577-10580.
https://doi.org/10.1074/jbc.R100005200

[37]. Jiang, M.; Guo, Z. Effects of Macromolecular Crowding on the Intrinsic Catalytic Efficiency and Structure of Enterobactin-Specific Isochorismate Synthase. J. Am. Chem. Soc. 2007, 129 (4), 730-731.
https://doi.org/10.1021/ja065064+

[38]. Chen, M.; Liu, Y.; Cao, H.; Song, L.; Zhang, Q. The secondary and aggregation structural changes of BSA induced by trivalent chromium: A biophysical study. J. Lumin. 2015, 158, 116-124.
https://doi.org/10.1016/j.jlumin.2014.09.021

[39]. Taraska, J. W. Mapping membrane protein structure with fluorescence. Curr. Opin. Struct. Biol. 2012, 22 (4), 507-513.
https://doi.org/10.1016/j.sbi.2012.02.004

[40]. Hellmann, N.; Schneider, D. Hands On: Using Tryptophan Fluorescence Spectroscopy to Study Protein Structure. Methods Mol. Biol. 2019, 379-401.
https://doi.org/10.1007/978-1-4939-9161-7_20

[41]. Ansari, N. K.; Khan, H. S.; Naeem, A. Doxorubicin as a Drug Repurposing for Disruption of α-Chymotrypsinogen-A Aggregates. Protein J. 2024, 43 (4), 842-857.
https://doi.org/10.1007/s10930-024-10217-w

[42]. Jayabharathi, J.; Thanikachalam, V.; Venkatesh Perumal, M. A study on the binding interaction between the imidazole derivative and bovine serum albumin by fluorescence spectroscopy. J. Lumin. 2012, 132 (3), 707-712.
https://doi.org/10.1016/j.jlumin.2011.10.023

[43]. Clapp, A. R.; Medintz, I. L.; Mauro, J. M.; Fisher, B. R.; Bawendi, M. G.; Mattoussi, H. Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors. J. Am. Chem. Soc. 2003, 126 (1), 301-310.
https://doi.org/10.1021/ja037088b

[44]. Schönbrunn, E.; Eschenburg, S.; Luger, K.; Kabsch, W.; Amrhein, N. Structural basis for the interaction of the fluorescence probe 8-anilino-1-naphthalene sulfonate (ANS) with the antibiotic target MurA. Proc. Natl. Acad. Sci. U.S.A. 2000, 97 (12), 6345-6349.
https://doi.org/10.1073/pnas.120120397

[45]. Guliyeva, A. J.; Gasymov, O. K. ANS fluorescence: Potential to discriminate hydrophobic sites of proteins in solid states. Biochem. Biophys. Rep. 2020, 24, 100843.
https://doi.org/10.1016/j.bbrep.2020.100843

[46]. Sancataldo, G.; Vetri, V.; Foderà, V.; Di Cara, G.; Militello, V.; Leone, M. Oxidation Enhances Human Serum Albumin Thermal Stability and Changes the Routes of Amyloid Fibril Formation. PLoS ONE 2014, 9 (1), e84552.
https://doi.org/10.1371/journal.pone.0084552

[47]. Kim, W.; Hecht, M. H. Generic hydrophobic residues are sufficient to promote aggregation of the Alzheimer's Aβ42 peptide. Proc. Natl. Acad. Sci. U.S.A. 2006, 103 (43), 15824-15829.
https://doi.org/10.1073/pnas.0605629103

[48]. Naeem, A.; Bhat, S. A.; Iram, A.; Khan, R. H. Aggregation of intrinsically disordered fibrinogen as the influence of backbone conformation. Arch. Biochem. Biophys. 2016, 603, 38-47.
https://doi.org/10.1016/j.abb.2016.04.017

[49]. Khurana, R.; Coleman, C.; Ionescu-Zanetti, C.; Carter, S. A.; Krishna, V.; Grover, R. K.; Roy, R.; Singh, S. Mechanism of thioflavin T binding to amyloid fibrils. J. Struct. Biol. 2005, 151 (3), 229-238.
https://doi.org/10.1016/j.jsb.2005.06.006

[50]. Wolfe, L. S.; Calabrese, M. F.; Nath, A.; Blaho, D. V.; Miranker, A. D.; Xiong, Y. Protein-induced photophysical changes to the amyloid indicator dye thioflavin T. Proc. Natl. Acad. Sci. U.S.A. 2010, 107 (39), 16863-16868.
https://doi.org/10.1073/pnas.1002867107

[51]. Biancalana, M.; Koide, S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta (BBA) - Proteins Proteom. 2010, 1804 (7), 1405-1412.
https://doi.org/10.1016/j.bbapap.2010.04.001

[52]. Siddiqui, G. A.; Naeem, A. Refolding of Hemoglobin Under Macromolecular Confinement: Impersonating In Vivo Volume Exclusion. J. Fluoresc. 2021, 31 (5), 1371-1377.
https://doi.org/10.1007/s10895-021-02751-y

[53]. Kumar, S.; Walter, J. Phosphorylation of amyloid beta (Aβ) peptides - A trigger for formation of toxic aggregates in Alzheimer's disease. Aging 2011, 3 (8), 803-812.
https://doi.org/10.18632/aging.100362

[54]. Li, S.; Wang, L.; Chusuei, C. C.; Suarez, V. M.; Blackwelder, P. L.; Micic, M.; Orbulescu, J.; Leblanc, R. M. Nontoxic Carbon Dots Potently Inhibit Human Insulin Fibrillation. Chem. Mater. 2015, 27 (5), 1764-1771.
https://doi.org/10.1021/cm504572b

[55]. Li, J.; Uversky, V. N.; Fink, A. L. Effect of Familial Parkinson's Disease Point Mutations A30P and A53T on the Structural Properties, Aggregation, and Fibrillation of Human α-Synuclein. Biochemistry 2001, 40 (38), 11604-11613.
https://doi.org/10.1021/bi010616g

[56]. Kheterpal, I.; Chen, M.; Cook, K. D.; Wetzel, R. Structural Differences in Aβ Amyloid Protofibrils and Fibrils Mapped by Hydrogen Exchange - Mass Spectrometry with On-line Proteolytic Fragmentation. J. Mol. Biol. 2006, 361 (4), 785-795.
https://doi.org/10.1016/j.jmb.2006.06.066

[57]. Khan, M. V.; Ishtikhar, M.; Rabbani, G.; Zaman, M.; Abdelhameed, A. S.; Khan, R. H. Polyols (Glycerol and Ethylene glycol) mediated amorphous aggregate inhibition and secondary structure restoration of metalloproteinase-conalbumin (ovotransferrin). Int. J. Biol. Macromol. 2017, 94, 290-300.
https://doi.org/10.1016/j.ijbiomac.2016.10.023

[58]. Chi, Z.; Liu, R. Phenotypic Characterization of the Binding of Tetracycline to Human Serum Albumin. Biomacromolecules 2010, 12 (1), 203-209.
https://doi.org/10.1021/bm1011568

[59]. Ansari, N. K.; Rais, A.; Naeem, A. Methotrexate for Drug Repurposing as an Anti-Aggregatory Agent to Mercuric Treated α-Chymotrypsinogen-A. Protein J. 2024, 43 (2), 362-374.
https://doi.org/10.1007/s10930-024-10187-z

[60]. Hasan, S.; Isar, M.; Naeem, A. Macromolecular crowding stabilises native structure of α-chymotrypsinogen-A against hexafluoro propanol-induced aggregates. Int. J. Biol. Macromol. 2020, 164, 3780-3788.
https://doi.org/10.1016/j.ijbiomac.2020.08.149

[61]. Hatters, D. M.; Minton, A. P.; Howlett, G. J. Macromolecular Crowding Accelerates Amyloid Formation by Human Apolipoprotein C-II. J. Biol. Chem. 2002, 277 (10), 7824-7830.
https://doi.org/10.1074/jbc.M110429200

[62]. Taboada, P.; Barbosa, S.; Castro, E.; Mosquera, V. Amyloid Fibril Formation and Other Aggregate Species Formed by Human Serum Albumin Association. J. Phys. Chem. B. 2006, 110 (42), 20733-20736.
https://doi.org/10.1021/jp064861r

[63]. Wu, C.; Scott, J.; Shea, J. Binding of Congo Red to Amyloid Protofibrils of the Alzheimer Aβ9-40 Peptide Probed by Molecular Dynamics Simulations. Biophys. J. 2012, 103 (3), 550-557.
https://doi.org/10.1016/j.bpj.2012.07.008

[64]. Stathopulos, P. B.; Scholz, G. A.; Hwang, Y.; Rumfeldt, J. A.; Lepock, J. R.; Meiering, E. M. Sonication of proteins causes formation of aggregates that resemble amyloid. Protein Sci. 2004, 13 (11), 3017-3027.
https://doi.org/10.1110/ps.04831804

[65]. Adler, A. J.; Greenfield, N. J.; Fasman, G. D. [27] Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol. 1973, 675-735.
https://doi.org/10.1016/S0076-6879(73)27030-1

[66]. Sen, S.; Konar, S.; Pathak, A.; Dasgupta, S.; DasGupta, S. Effect of Functionalized Magnetic MnFe2O4 Nanoparticles on Fibrillation of Human Serum Albumin. J. Phys. Chem. B. 2014, 118 (40), 11667-11676.
https://doi.org/10.1021/jp507902y

[67]. Paul, B. K.; Ray, D.; Guchhait, N. Unraveling the binding interaction and kinetics of a prospective anti-HIV drug with a model transport protein: results and challenges. Phys. Chem. Chem. Phys. 2013, 15 (4), 1275-1287.
https://doi.org/10.1039/C2CP42539D

[68]. Naeem, A.; Iram, A.; Bhat, S. A. Anesthetic 2,2,2-trifluoroethanol induces amyloidogenesis and cytotoxicity in human serum albumin. Int. J. Biol. Macromol. 2015, 79, 726-735.
https://doi.org/10.1016/j.ijbiomac.2015.05.045

[69]. Tabner, B. J.; El-Agnaf, O. M.; Turnbull, S.; German, M. J.; Paleologou, K. E.; Hayashi, Y.; Cooper, L. J.; Fullwood, N. J.; Allsop, D. Hydrogen Peroxide Is Generated during the Very Early Stages of Aggregation of the Amyloid Peptides Implicated in Alzheimer Disease and Familial British Dementia. J. Biol. Chem. 2005, 280 (43), 35789-35792.
https://doi.org/10.1074/jbc.C500238200

[70]. Jin, S.; Kedia, N.; Illes-Toth, E.; Haralampiev, I.; Prisner, S.; Herrmann, A.; Wanker, E. E.; Bieschke, J. Amyloid-β(1-42) Aggregation Initiates Its Cellular Uptake and Cytotoxicity. J. Biol. Chem. 2016, 291 (37), 19590-19606.
https://doi.org/10.1074/jbc.M115.691840

[71]. Yerbury, J. J. Protein aggregates stimulate macropinocytosis facilitating their propagation. Prion 2016, 10 (2), 119-126.
https://doi.org/10.1080/19336896.2016.1141860

[72]. Husain, N.; Mahmood, R. Copper(II) generates ROS and RNS, impairs antioxidant system and damages membrane and DNA in human blood cells. Environ. Sci. Pollut. Res. 2019, 26 (20), 20654-20668.
https://doi.org/10.1007/s11356-019-05345-1

[73]. Rodríguez‐Martínez, J. A.; Solá, R. J.; Castillo, B.; Cintrón‐Colón, H. R.; Rivera‐Rivera, I.; Barletta, G.; Griebenow, K. Stabilization of α‐chymotrypsin upon PEGylation correlates with reduced structural dynamics. Biotech & Bioengineering 2008, 101 (6), 1142-1149.
https://doi.org/10.1002/bit.22014

[74]. Castellanos, I. J.; Al-Azzam, W.; Griebenow, K. Effect of the Covalent Modification with Poly(ethylene glycol) on α-Chymotrypsin Stability upon Encapsulation in Poly(lactic-co-glycolic) Microspheres. J. Pharm. Sci. 2005, 94 (2), 327-340.
https://doi.org/10.1002/jps.20243

[75]. Inada, Y.; Furukawa, M.; Sasaki, H.; Kodera, Y.; Hiroto, M.; Nishimura, H.; Matsushima, A. Biomedical and biotechnological applications of PEG- and PM-modified proteins. Trends Biotechnol. 1995, 13 (3), 86-91.
https://doi.org/10.1016/S0167-7799(00)88912-X

[76]. Pasut, G.; Sergi, M.; Veronese, F. M. Anti-cancer PEG-enzymes: 30 years old, but still a current approach. Adv. Drug Deliv. Rev. 2008, 60 (1), 69-78.
https://doi.org/10.1016/j.addr.2007.04.018

[77]. Zhou, H. Crowding Effects of Membrane Proteins. J. Phys. Chem. B. 2009, 113 (23), 7995-8005.
https://doi.org/10.1021/jp8107446

[78]. Totani, K.; Ihara, Y.; Matsuo, I.; Ito, Y. Effects of Macromolecular Crowding on Glycoprotein Processing Enzymes. J. Am. Chem. Soc. 2008, 130 (6), 2101-2107.
https://doi.org/10.1021/ja077570k

[79]. Khurana, R.; Ionescu-Zanetti, C.; Pope, M.; Li, J.; Nielson, L.; Ramírez-Alvarado, M.; Regan, L.; Fink, A. L.; Carter, S. A. A General Model for Amyloid Fibril Assembly Based on Morphological Studies Using Atomic Force Microscopy. Biophys. J. 2003, 85 (2), 1135-1144.
https://doi.org/10.1016/S0006-3495(03)74550-0

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).