European Journal of Chemistry

Enhanced photoconversion efficiency in organic polymer solar cells: Synthesis, structural analysis and computational modelling of 4,8-dichlorobenzo[1,2-b]difuran-2,6-dicarboxylic acid-based composite

Crossmark


Main Article Content

Raman Ananthavalli
Jagadeesan Karpagam
Singaravelu Ramalingam
Ramadoss Aarthi

Abstract

Improving the photoconversion efficiency (PCE) of organic polymer-based solar cells (SCs) is crucial to their competitiveness with conventional SCs. This study presents a novel approach to improve PCE of an organic composite solar cell incorporating 4,8-dichlorobenzo[1,2-b]difuran-2,6-dicarboxylic acid. The molecular composite was designed based on the photoactive donor-π-acceptor (D-π-A) architecture and computationally modeled to optimize its efficiency. The synthesized material was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and spectral analysis, confirming the formation of a perovskite lattice. Photovoltaic performance was evaluated using simulated device measurements, which produced a fill factor (FF) of 0.708, a short-circuit current density (JSC) of 12.8 mA/cm2, an open-circuit voltage (VOC) of 1.22 V, and an overall PCE of 12.78%. The active exciton diffusion path length was measured at < 9 Å, with a direct band gap of 2.05 eV. The stabilized Urbach energy of the material ranged from 110 to 220 meV. Furthermore, the active single-layer film was interfaced with both a small work function electrode (SWFE) and a long work function electrode (LWFE). The material exhibited high polarizability (αtot = 483.34×10-33 esu, Δα = 332.68×10-33 esu), indicating a strong potential for efficient photoconversion. This study demonstrates the feasibility of using 4,8-dichlorobenzo [1,2-b] difuran-2,6-dicarboxylic acid-based composite for high-performance organic solar cells, offering a promising alternative to conventional SCs.


icon graph This Abstract was viewed 23 times | icon graph Article PDF downloaded 2 times

How to Cite
(1)
Ananthavalli, R.; Karpagam, J.; Ramalingam, S.; Aarthi, R. Enhanced Photoconversion Efficiency in Organic Polymer Solar Cells: Synthesis, Structural Analysis and Computational Modelling of 4,8-dichlorobenzo[1,2-b]difuran-2,6-Dicarboxylic Acid-Based Composite. Eur. J. Chem. 2025, 16, 178-200.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Jeong, S.; Kim, H.; Park, N. Challenges for Thermally Stable Spiro-MeOTAD toward the Market Entry of Highly Efficient Perovskite Solar Cells. ACS. Appl. Mater. Interfaces 2022, 14 (30), 34220-34227.
https://doi.org/10.1021/acsami.1c21852

[2]. Szostak, R.; de Souza Gonçalves, A.; de Freitas, J. N.; Marchezi, P. E.; de Araújo, F. L.; Tolentino, H. C.; Toney, M. F.; das Chagas Marques, F.; Nogueira, A. F. In Situ and Operando Characterizations of Metal Halide Perovskite and Solar Cells: Insights from Lab-Sized Devices to Upscaling Processes. Chem. Rev. 2023, 123 (6), 3160-3236.
https://doi.org/10.1021/acs.chemrev.2c00382

[3]. Zhou, Y.; Herz, L. M.; Jen, A. K.-Y.; Saliba, M. Advances and challenges in understanding the microscopic structure-property-performance relationship in perovskite solar cells. Nat. Energy 2022, 7, 794-807.
https://doi.org/10.1038/s41560-022-01096-5

[4]. Park, S. M.; Wei, M.; Lempesis, N.; Yu, W.; Hossain, T.; Agosta, L.; Carnevali, V.; Atapattu, H. R.; Serles, P.; Eickemeyer, F. T.; Shin, H.; Vafaie, M.; Choi, D.; Darabi, K.; Jung, E. D.; Yang, Y.; Kim, D. B.; Zakeeruddin, S. M.; Chen, B.; Amassian, A.; Filleter, T.; Kanatzidis, M. G.; Graham, K. R.; Xiao, L.; Rothlisberger, U.; Grätzel, M.; Sargent, E. H. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 2023, 624 (7991), 289-294.
https://doi.org/10.1038/s41586-023-06745-7

[5]. Li, S.; Li, Z.; Wan, X.; Chen, Y. Recent progress in flexible organic solar cells. eScience 2023, 3 (1), 100085.
https://doi.org/10.1016/j.esci.2022.10.010

[6]. Heeger, A. J. 25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation. Adv. Mater. 2013, 26 (1), 10-28.
https://doi.org/10.1002/adma.201304373

[7]. Søndergaard, R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T. T.; Krebs, F. C. Roll-to-roll fabrication of polymer solar cells. Mater. Today 2012, 15 (1-2), 36-49.
https://doi.org/10.1016/S1369-7021(12)70019-6

[8]. Park, S.; Heo, S. W.; Lee, W.; Inoue, D.; Jiang, Z.; Yu, K.; Jinno, H.; Hashizume, D.; Sekino, M.; Yokota, T.; Fukuda, K.; Tajima, K.; Someya, T. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 2018, 561, 516-521.
https://doi.org/10.1038/s41586-018-0536-x

[9]. Wang, G.; Zhang, J.; Yang, C.; Wang, Y.; Xing, Y.; Adil, M. A.; Yang, Y.; Tian, L.; Su, M.; Shang, W.; Lu, K.; Shuai, Z.; Wei, Z. Synergistic Optimization Enables Large‐Area Flexible Organic Solar Cells to Maintain over 98% PCE of the Small‐Area Rigid Devices. Adv. Mater. 2020, 32 (49), 2005153.
https://doi.org/10.1002/adma.202005153

[10]. Peng, Z.; Jiang, K.; Qin, Y.; Li, M.; Balar, N.; O'Connor, B. T.; Ade, H.; Ye, L.; Geng, Y. Modulation of morphological, mechanical, and photovoltaic properties of ternary organic photovoltaic blends for optimum operation. Adv. Energy Mater. 2021, 11, 2003506.
https://doi.org/10.1002/aenm.202003506

[11]. Wan, X.; Li, C.; Zhang, M.; Chen, Y. Acceptor-donor-acceptor type molecules for high performance organic photovoltaics - chemistry and mechanism. Chem. Soc. Rev. 2020, 49, 2828-2842.
https://doi.org/10.1039/D0CS00084A

[12]. Zeng, G.; Chen, W.; Chen, X.; Hu, Y.; Chen, Y.; Zhang, B.; Chen, H.; Sun, W.; Shen, Y.; Li, Y.; Yan, F.; Li, Y. Realizing 17.5% Efficiency Flexible Organic Solar Cells via Atomic-Level Chemical Welding of Silver Nanowire Electrodes. J. Am. Chem. Soc. 2022, 144 (19), 8658-8668.
https://doi.org/10.1021/jacs.2c01503

[13]. Sakthivel, P.; Ban, T. W.; Kim, S.; Kim, S.; Gal, Y.; Chae, E. A.; Shin, W. S.; Moon, S.; Lee, J.; Jin, S. Synthesis and studies of methyl ester substituted thieno-o-quinodimethane fullerene multiadducts for polymer solar cells. Sol. Energy Mater. Sol. Cells 2013, 113, 13-19.
https://doi.org/10.1016/j.solmat.2013.01.040

[14]. Brabec, C. J.; Winder, C.; Sariciftci, N. S.; Hummelen, J. C.; Dhanabalan, A.; van Hal, P. A.; Janssen, R. A. J. A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes. Adv. Funct. Mater. 2002, 12, 709-712.
https://doi.org/10.1002/1616-3028(20021016)12:10<709::AID-ADFM709>3.0.CO;2-N

[15]. Watson, B.; Meng, L.; Fetrow, C.; Qin, Y. Core/Shell Conjugated Polymer/Quantum Dot Composite Nanofibers through Orthogonal Non-Covalent Interactions. Polymers 2016, 8 (12), 408.
https://doi.org/10.3390/polym8120408

[16]. Collavini, S.; Völker, S. F.; Delgado, J. L. Understanding the Outstanding Power Conversion Efficiency of Perovskite‐Based Solar Cells. Angew Chem Int Ed 2015, 54 (34), 9757-9759.
https://doi.org/10.1002/anie.201505321

[17]. Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T.; Stranks, S. D.; Snaith, H. J.; Nicholas, R. J. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nature Phys 2015, 11 (7), 582-587.
https://doi.org/10.1038/nphys3357

[18]. Palanichamy, S.; Raj Mohamed, J.; Satheesh Kumar, P. S.; Pandiarajan, S.; Amalraj, L. Volume of precursor solution effect on the properties of SnO2 thin films prepared by nebulized spray pyrolysis technique. Opt Quant Electron 2018, 50 (9), 1-19.
https://doi.org/10.1007/s11082-018-1611-0

[19]. Abraham, J. T.; Koshy, P.; Vaidyan, V. K.; Mukherjee, P. S.; Guruswamy, P.; Kumari, L. P. XRD and SEM studies of reactively deposited tin oxide thin films. Bull. Mater. Sci. 1995, 18 (5), 557-562.
https://doi.org/10.1007/BF02744841

[20]. Jayachitra, K.; JobePrabakar, P.; Ramalingam, S. Vibrational, NMR and UV-Visible spectroscopic investigation on 10-methyl anthracene 9-carbaldehyde using computational calculations. J. Mol. Struct. 2020, 1217, 128435.
https://doi.org/10.1016/j.molstruc.2020.128435

[21]. Joice Malini, M.; Kunjitham, R.; Sangeetha, M.; Ramalingam, S. Electro-optic property evaluation, vibrational analysis and optical investigation on NLO crystal; Nickel sulfate doped L-Valine crystal using theoretical tools. Chem. Phys. Lett. 2021, 768, 138268.
https://doi.org/10.1016/j.cplett.2020.138268

[22]. Ramalingam, S.; Periandy, S. Spectroscopic investigation, computed IR intensity, Raman activity and vibrational frequency analysis on 3-bromoanisole using HF and DFT (LSDA/MPW1PW91) calculations. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2011, 78 (2), 835-843.
https://doi.org/10.1016/j.saa.2010.12.043

[23]. Vidhya, D.; Susithra, G.; Ramalingam, S.; Kumar, N.; Karthikeyan, M. Solvation modeling and optical properties of CdSO4-Doped L-Valine crystals. J. Indian Chem. Soc. 2024, 101 (11), 101448.
https://doi.org/10.1016/j.jics.2024.101448

[24]. Liu, X.; Sheng, H.; Zhou, Y.; Song, Q. Palladium-catalyzed C-H bond activation for the assembly of N-aryl carbazoles with aromatic amines as nitrogen sources. Chem. Commun. 2020, 56 (11), 1665-1668.
https://doi.org/10.1039/C9CC09493H

[25]. Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65 (4), 272-275.
https://doi.org/10.1016/j.scib.2020.01.001

[26]. Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H.-L.; Cao, Y.; Chen, Y. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361, 1094-1098.
https://doi.org/10.1126/science.aat2612

[27]. Sun, S.-S.; Dalton, L. R. Introduction to organic electronic and optoelectronic materials and devices, second edition; CRC Press, 2016.

[28]. Ghosh, P. S.; Ponomareva, I. Negative Linear Compressibility in Organic-Inorganic Hybrid Perovskite [NH2NH3]X(HCOO)3 (X = Mn, Fe, Co). J. Phys. Chem. Lett. 2022, 13 (13), 3143-3149.
https://doi.org/10.1021/acs.jpclett.2c00288

[29]. Lin-Vien, D.; Colthup, N. B.; Fateley, W. G.; Grasselli, J. G. The handbook of infrared and Raman characteristic frequencies of organic molecules; Academic Press: San Diego, CA, 1991.

[30]. Thirumurugan, R.; Ramalingam, S.; Periandy, S.; Aarthi, R. Optoelectronic Evaluation, Chemical Potential Identification, Chemiparametric Oscillation Mapping, and Dielectric Efficiency Investigation of Organic NLO Crystal: 2‐Aminofluorene Using Computational Calculations. Cryst. Res. Technol. 2021, 56 (9), 2100062.
https://doi.org/10.1002/crat.202100062

[31]. Katritzky, A. R.; Lagowski, J. M. 130. Infrared absorption of heteroaromatic, five-membered, monocyclic nuclei. Part I. 2-Monosubstituted furans. J. Chem. Soc. 1959, 657-660.
https://doi.org/10.1039/jr9590000657

[32]. Greenwood, N. N.; Wright, J. C. 70. Heterocyclic organoboron compounds. Part III. Synthesis of phenylboracyclopenatne and the infrared spectra of this and other phenylboron compounds. J. Chem. Soc. 1965, 448-453.
https://doi.org/10.1039/jr9650000448

[33]. Baggett, N.; Barker, S. A.; Foster, A. B.; Moore, R. H.; Whiffen, D. H. 882. Infrared spectra of carbohydrates. Part VIII. Hydropyranols and hydrofuranols. J. Chem. Soc. 1960, 4565-4570.
https://doi.org/10.1039/jr9600004565

[34]. Sathyanarayana, D. N. Vibrational Spectroscopy: Theory and Applications; New Age International: New Delhi, India, 2007.

[35]. Liptay, W. Introduction to Infrared and Raman Spectroscopy. Von N. B. Colthup, L. H. Daly und S. E. Wiberley. Academic Press, New York‐London 1964. 1. Aufl., XII, 511 S., zahlr. Abb. u. Tab., geb. £ 12. Angew. Chem. 1965, 77 (16), 744-745.
https://doi.org/10.1002/ange.19650771677

[36]. Theophanides, T. Introduction to Infrared Spectroscopy. Infrared Spectrosc. - Mater. Sci. Eng. Technol. 2012.
https://doi.org/10.5772/49106

[37]. Manzoor Ali, M.; George, G.; Ramalingam, S.; Periandy, S.; Gokulakrishnan, V. Vibrational [FT-IR, FT-Raman] analysis, NMR and mass - Spectroscopic investigation on 3,6-Dimethylphenanthrene using computational calculation. J. Mol. Struct. 2015, 1099, 463-481.
https://doi.org/10.1016/j.molstruc.2015.05.066

[38]. Karthikeyan, N.; Joseph Prince, J.; Ramalingam, S.; Periandy, S. Electronic [UV-Visible] and vibrational [FT-IR, FT-Raman] investigation and NMR-mass spectroscopic analysis of terephthalic acid using quantum Gaussian calculations. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2015, 139, 229-242.
https://doi.org/10.1016/j.saa.2014.11.112

[39]. Ramalingam, S.; David Suresh Babu, P.; Periandy, S.; Fereyduni, E. Vibrational investigation, molecular orbital studies and molecular electrostatic potential map analysis on 3-chlorobenzoic acid using hybrid computational calculations. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2011, 84 (1), 210-220.
https://doi.org/10.1016/j.saa.2011.09.030

[40]. Ananthavalli, R.; Karpagam, J.; Ramalingam, S.; Aarthi, R.; Elanchezhian, B. Synthesis and experimental investigations of organic perovskite solar cell material; 2,5-bis(5-aminofuran-2-yl) thiophene 1,1-dioxide; photo-voltaic data validation using computational model and spectroscopic tools. J. Phys. Chem. Solids 2023, 177, 111271.
https://doi.org/10.1016/j.jpcs.2023.111271

[41]. Sooryakala, K.; Ramalingam, S.; Periandy, S.; Aarthi, R. NLO evaluation on opto-electronic application and chemical potential oscillation analysis of 2-Chloro-4-nitro-N-methylaniline crystal using crystallographic, spectroscopic and theoretical tools. J. Mol. Struct. 2021, 1231, 129961.
https://doi.org/10.1016/j.molstruc.2021.129961

[42]. Maqsood, N.; Asif, A.; Elmushyakhi, A.; Ans, M.; Shehzad, R. A.; Rasool, A.; Bibi, Z.; Shawky, A. M.; Iqbal, J. Environmentally affable and highly efficient donor material based on cyclopentadithiophene (CPDT) framework for remarkable organic solar cells. Opt. Mater. 2023, 135, 113316.
https://doi.org/10.1016/j.optmat.2022.113316

[43]. Anbarasan, P. M.; Kumar, P. S.; Vasudevan, K.; Govindan, R.; Prakasam, A.; Geetha, M. Geometrical, electronic structure, nonlinear optical and spectroscopic investigations of 4-(phenylthio)phthalonitrile dye sensitizer for solar cells using quantum chemical calculations. Eur. J. Chem. 2011, 2 (2), 206-213.
https://doi.org/10.5155/eurjchem.2.2.206-213.269

[44]. Zhao, X.; Ball, M. L.; Kakekhani, A.; Liu, T.; Rappe, A. M.; Loo, Y. A charge transfer framework that describes supramolecular interactions governing structure and properties of 2D perovskites. Nat Commun 2022, 13 (1).
https://doi.org/10.1038/s41467-022-31567-y

[45]. Chen, S.; Tsang, S.; Lai, T.; Reynolds, J. R.; So, F. Dielectric Effect on the Photovoltage Loss in Organic Photovoltaic Cells. Adv. Mater. 2014, 26 (35), 6125-6131.
https://doi.org/10.1002/adma.201401987

[46]. Vohra, V.; Kawashima, K.; Kakara, T.; Koganezawa, T.; Osaka, I.; Takimiya, K.; Murata, H. Efficient inverted polymer solar cells employing favourable molecular orientation. Nature Photon 2015, 9 (6), 403-408.
https://doi.org/10.1038/nphoton.2015.84

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).