European Journal of Chemistry

Levels of selected metals in spices cultivated in Southwest Ethiopia: Occurrence and health risk assessment

Crossmark


Main Article Content

Tura Gemechu
Abi Legesse
Bhagwan Singh Chandravanshi
Negussie Megersa

Abstract

In this study, the levels of seven metals (Ca, Cd, Cr, Cu, Zn, Pb, and Ni) in the soil and spice plants grown around Oromia Region of Southwest Ethiopia were analyzed using flame atomic absorption spectrometry (FAAS) after acid digestion. The pH of the soil samples was found to be in the range of 5.86 to 6.57, with organic matter 13.93 to 20.59% and electrical conductivity 0.28 to 0.49 mS/m. Among the metals determined, Ca was the most prevalent, ranging from 429.01 to 5369.67 mg/kg, Zn 31.88 to 67.70 mg/kg and Cu 7.62 to 10.67 mg/kg in plants, while Cd, Cr, Pb, and Ni were not detected in the spice plants. Ca was the most abundant metal in soils, ranged from 1195.67 to 4147.17 mg/kg, followed by Zn, Cr, Ni, and Cu, ranging from 112.90 to 120.25 mg/kg, 21.92 to 45.76 mg/kg, 21.40 to 56.93 mg/kg and 13.03 to 28.67 mg/kg, respectively. Cd and Pb were not detected in the soil samples. The hazard quotient and hazard index values of Cu and Zn in all spices were below one, which may ensure that these spices do not pose substantial health risks to consumers.


icon graph This Abstract was viewed 8 times | icon graph Article PDF downloaded 1 times

How to Cite
(1)
Gemechu, T.; Legesse, A.; Chandravanshi, B. S.; Megersa, N. Levels of Selected Metals in Spices Cultivated in Southwest Ethiopia: Occurrence and Health Risk Assessment. Eur. J. Chem. 2025, 16, 136-145.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Dghaim, R.; Al Khatib, S.; Rasool, H.; Ali Khan, M. Determination of heavy metals concentration in traditional herbs commonly consumed in the United Arab Emirates. J. Environ. Public Health 2015, 2015, 1-6, 973878.
https://doi.org/10.1155/2015/973878

[2]. Olusakin O, P.; Olaoluwa J, D. Evaluation of effects of heavy metal contents of some common spices available in Odo-Ori market, Iwo, Nigeria. J. Environ. Anal. Chem. 2016, 3 (1), 1000174.
https://doi.org/10.4172/2380-2391.1000174

[3]. Asiminicesei, D.; Vasilachi, I. C.; Gavrilescu, M. Heavy metal contamination of medicinal plants and potential implications on human health. Rev. Chim. 2020, 71 (7), 16-36.
https://doi.org/10.37358/RC.20.7.8222

[4]. Rashid, A.; Schutte, B. J.; Ulery, A.; Deyholos, M. K.; Sanogo, S.; Lehnhoff, E. A.; Beck, L. Heavy metal contamination in agricultural soil: environmental pollutants affecting crop health. Agronomy 2023, 13 (6), 1521.
https://doi.org/10.3390/agronomy13061521

[5]. Al-Mashhadi, M. J.; Alabadi, L. A. Investigating the efficiency of (Alhagi graecorum) plant in accumulating some heavy metals. IOP. Conf. Ser.: Earth Environ. Sci. 2023, 1214 (1), 012005.
https://doi.org/10.1088/1755-1315/1214/1/012005

[6]. Pawlos, Z.; Chandravanshi, B. S.; Yohannes, W.; Embiale, A. Levels of selected metals in the fruits of a wild edible plant (Rubus steudneri Schweinf) and its underlying soil. Bull. Chem. Soc. Eth. 2021, 35 (2), 217-228.
https://doi.org/10.4314/bcse.v35i2.1

[7]. Gebeyehu, H. R.; Bayissa, L. D. Levels of heavy metals in soil and vegetables and associated health risks in Mojo area, Ethiopia. PLoS ONE 2020, 15 (1), e0227883.
https://doi.org/10.1371/journal.pone.0227883

[8]. Ahmed, M. J.; Ali, M. K.; Hossain, M.; Siraj, S.; Ahsan, M. A. Determination of trace metals in air of Chittagong city-Bangladesh. Eur. J. Chem. 2012, 3, 416-420.
https://doi.org/10.5155/eurjchem.3.4.416-420.645

[9]. Kumar, A. Heavy metal concentrations in drinking water in the region north-east of Jhunjhunu, Rajasthan, India. Eur. J. Chem. 2023, 14 (3), 348-352.
https://doi.org/10.5155/eurjchem.14.3.348-352.2435

[10]. Bortey-Sam, N.; Nakayama, S. M.; Ikenaka, Y.; Akoto, O.; Baidoo, E.; Yohannes, Y. B.; Mizukawa, H.; Ishizuka, M. Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana: estimation of the daily intakes and target hazard quotients (THQs). Ecotoxicol. Environ. Saf. 2015, 111, 160-167.
https://doi.org/10.1016/j.ecoenv.2014.09.008

[11]. Kebede, T.; Getachew, H.; Legesse, A.; Megersa, N. Uptake of selected heavy metals from contaminated waters utilizing cost-effective and environmentally friendly biosorbents prepared from the residues of a traditionally fermented Ethiopian alcoholic beverage (Tella). Eur. J. Chem. 2024, 15, 254-265.
https://doi.org/10.5155/eurjchem.15.3.254-265.2539

[12]. Tola, A. T.; Geleta, G. S.; Feyissa, G. R. Assessment of essential and potentially toxic metals in raw cow milk from Mukaturi town, Oromia Regional State, Ethiopia. Sci. Total Environ. 2024, 926, 171987.
https://doi.org/10.1016/j.scitotenv.2024.171987

[13]. Ayele, E.; Urga, K.; Chandravanshi, B. S. Effect of cooking temperature on mineral content and anti-nutritional factors of Yam and Taro Grown in Southern Ethiopia. Int. J. Food Eng. 2015, 11 (3), 371-382.
https://doi.org/10.1515/ijfe-2014-0264

[14]. Hagos, M.; Chandravanshi, B. S. Levels of essential and toxic metals in fenugreek seeds (Trigonella Foenum-Graecum L.) cultivated in different parts of Ethiopia. Braz. J. Food Technol. 2016, 19, e2015059.
https://doi.org/10.1590/1981-6723.5915

[15]. El Hosry, L.; Sok, N.; Richa, R.; Al Mashtoub, L.; Cayot, P.; Bou-Maroun, E. Sample preparation and analytical techniques in the determination of trace elements in food: A Review. Foods 2023, 12 (4), 895.
https://doi.org/10.3390/foods12040895

[16]. Hart, G.; Koether, M.; McElroy, T.; Greipsson, S. Evaluation of chelating agents used in phytoextraction by switchgrass of lead contaminated soil. Plants 2022, 11 (8), 1012.
https://doi.org/10.3390/plants11081012

[17]. Gürkan, R.; Kartal Temel, N. Manganese sensitised-indirect determination of melamine in milk-based samples by flame atomic absorption spectrometry coupled with ultrasound assisted-cloud point extraction. Int. J. Environ. Anal. Chem. 2019, 100 (2), 152-174.
https://doi.org/10.1080/03067319.2019.1632302

[18]. Han, Q.; Liu, Y.; Huo, Y.; Li, D.; Yang, X. Determination of ultra-trace Cobalt in water wamples using dispersive liquid-liquid microextraction followed by graphite furnace atomic absorption spectrometry. Molecules 2022, 27 (9), 2694.
https://doi.org/10.3390/molecules27092694

[19]. Gorzin, F.; Bahri Rasht Abadi, M. Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies. Adsorpt. Sci. Technol. 2017, 36 (1-2), 149-169.
https://doi.org/10.1177/0263617416686976

[20]. Mekassa, B.; Chandravanshi, B. S. Levels of selected essential and non-essential metals in seeds of korarima (Aframomum corrorima) cultivated in Ethiopia. Braz. J. Food Technol. 2015, 18 (2), 102-111.
https://doi.org/10.1590/1981-6723.5614

[21]. Wagesho, Y.; Chandravanshi, B. S. Levels of essential and non-essential metals in ginger (Zingiber officinale) cultivated in Ethiopia. SpringerPlus 2015, 4 (1), 107.
https://doi.org/10.1186/s40064-015-0899-5

[22]. Hussen, A.; Westbom, R.; Megersa, N.; Mathiasson, L.; Björklund, E. Selective pressurized liquid extraction for multi-residue analysis of organochlorine pesticides in soil. J. Chromatogr. A 2007, 1152 (1-2), 247-253.
https://doi.org/10.1016/j.chroma.2007.02.076

[23]. Boke, A.; Megersa, N.; Teju, E. Quantitative determination of the heavy metal levels in the wild edible plant parts and their corresponding soils of the central and Western Regions of the Oromia State, Ethiopia. J. Environ. Anal. Toxicol. 2015, 5, 5.
https://doi.org/10.4172/2161-0525.1000299

[24]. Amde, M.; Megersa, N.; Taddesse, A. M.; Bedassa, T. Determination of the levels of selected metals in seeds, flowers and fruits of medicinal plants used for tapeworm treatment in Ethiopia. Toxicol. amp; Environ. Chem. 2013, 95 (1), 82-100.
https://doi.org/10.1080/02772248.2012.744022

[25]. Burns, D. T.; Danzer, K.; Townshend, A. Use of the term "recovery" and "apparent recovery" in analytical procedures (IUPAC Recommendations 2002). Pure Appl. Chem. 2002, 74, 2201-2205.
https://doi.org/10.1351/pac200274112201

[26]. Ubuoh, E.; Umezuruike, S.; Nworuh, B.; Emeka, C. Assessment of soil pH and heavy metal concentrations in agricultural land impacted with Medical waste incinerator (MWI) flue ash (FA) in Abia State, Nigeria. J. Appl. Sci. Environ. Manag. 2019, 23 (2), 275-282.
https://doi.org/10.4314/jasem.v23i2.12

[27]. Salem, M.; Bedade, D. K.; Al-Ethawi, L.; Al-waleed, S. Assessment of physiochemical properties and concentration of heavy metals in agricultural soils fertilized with chemical fertilizers. Heliyon 2020, 6 (10), e05224.
https://doi.org/10.1016/j.heliyon.2020.e05224

[28]. Maphuhla, N. G.; Lewu, F. B.; Oyedeji, O. O. Accumulation of heavy metal concentration and physicochemical parameters in soil from Alice landfill site in Eastern Cape, South Africa. Res. Gate 2021, 1-18.
https://doi.org/10.21203/rs.3.rs-621824/v1

[29]. Amer, M. M.; Sabry, B. A.; Marrez, D. A.; Hathout, A. S.; Fouzy, A. S. Exposure assessment of heavy metal residues in some Egyptian fruits. Toxicol. Rep. 2019, 6, 538-543.
https://doi.org/10.1016/j.toxrep.2019.06.007

[30]. Meseret, M.; Ketema, G.; Kassahun, H. Health risk assessment and determination of some heavy metals in commonly consumed traditional herbal preparations in Northeast Ethiopia. J. Chem. 2020, 2020, 1-7, 8883837.
https://doi.org/10.1155/2020/8883837

[31]. Gebreyohannes, F.; Gebrekidan, A. Health risk assessment of heavy metals via consumption of spinach vegetable grown in Elalla River. Bull. Chem. Soc. Eth. 2018, 32 (1), 65-75.
https://doi.org/10.4314/bcse.v32i1.6

[32]. Mekuanint, Y.; Gemechu, T.; Megersa, N. Levels of selected toxic heavy metals in the root of Rumex abyssinicus, a traditional medicinal plant, collected from two locations in the city of Addis Ababa. Bull. Chem. Soc. Eth. 2025, 39 (2), 243-256.
https://doi.org/10.4314/bcse.v39i2.5

[33]. U.S. EPA. Exposure Factors Handbook 2011 Edition (Final Report). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F, 2011. https://cfpub.epa.gov/ncea/efp/recordisplay.cfm?deid=236252. Accessed on April 25, 2025.

[34]. Ghasemidehkordi, B.; Malekirad, A. A.; Nazem, H.; Fazilati, M.; Salavati, H.; Shariatifar, N.; Rezaei, M.; Fakhri, Y.; Mousavi Khaneghah, A. Concentration of lead and mercury in collected vegetables and herbs from Markazi province, Iran: a non-carcinogenic risk assessment. Food Chem. Toxicol. 2018, 113, 204-210.
https://doi.org/10.1016/j.fct.2018.01.048

[35]. Mohammadi, A. A.; Zarei, A.; Majidi, S.; Ghaderpoury, A.; Hashempour, Y.; Saghi, M. H.; Alinejad, A.; Yousefi, M.; Hosseingholizadeh, N.; Ghaderpoori, M. Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX 2019, 6, 1642-1651.
https://doi.org/10.1016/j.mex.2019.07.017

[36]. Muthusamy, M. Effect of heavy metal and nutrient uptake by soils in Indian Cardamom Hills. J. Soil. Sci. Environ. Manage. 2012, 3 (8), 196-206.
https://doi.org/10.5897/JSSEM11.091

[37]. Nordin, N.; Selamat, J. Heavy metals in spices and herbs from wholesale markets in Malaysia. Food Addit. Contam. Part B 2013, 6 (1), 36-41.
https://doi.org/10.1080/19393210.2012.721140

[38]. Admasu, S.; Chandravanshi, B. S.; Yohannes, W. Levels of selected metals in the leaves of Ruta chalepensis L. (Rue) collected from four different areas of Ethiopia. Bull. Chem. Soc. Eth. 2018, 32 (2), 185-197.
https://doi.org/10.4314/bcse.v32i2.1

[39]. Yu, H.; Li, C.; Yan, J.; Ma, Y.; Zhou, X.; Yu, W.; Kan, H.; Meng, Q.; Xie, R.; Dong, P. A review on adsorption characteristics and influencing mechanism of heavy metals in farmland soil. RSC. Adv. 2023, 13 (6), 3505-3519.
https://doi.org/10.1039/D2RA07095B

[40]. Usman, K.; Al-Ghouti, M. A.; Abu-Dieyeh, M. H. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena Qataranse. Sci. Rep. 2019, 9 (1), 5658.
https://doi.org/10.1038/s41598-019-42029-9

[41]. Eid, E. M.; Shaltout, K. H. Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site. Int. J. Phytoremediation 2016, 18 (11), 1075-1085.
https://doi.org/10.1080/15226514.2016.1183578

[42]. Isong, E. U.; Essien, I. B. Nutrient and antinutrient composition of three varieties of Piper species. Plant Food Hum. Nutr. 1996, 49 (2), 133-137.
https://doi.org/10.1007/BF01091970

[43]. Dagne, B. B.; Endale, T. Levels of some selected metals (Fe, Cu and Zn) in selected vegetables and soil around eastern industry zone, Central Ethiopia. Afr. J. Agric. Res. 2019, 14 (2), 78-91.
https://doi.org/10.5897/AJAR2018.13615

[44]. Karahan, F. Evaluation of trace element and heavy metal levels of some ethnobotanically important medicinal plants used as remedies in Southern Turkey in terms of human health risk. Biol. Trace Elem. Res. 2022, 201 (1), 493-513.
https://doi.org/10.1007/s12011-022-03299-z

[45]. Yruela, I. Copper in plants: acquisition, transport and interactions. Functional Plant Biol. 2009, 36 (5), 409-430.
https://doi.org/10.1071/FP08288

[46]. Alhogbi, B. G.; Al-Ansari, S. A.; El-Shahawi, M. S. A Comparative study on the bioavailability and soil-to-plant transfer factors of potentially toxic element contamination in agricultural soils and their impacts: A Case study of dense farmland in the Western Region of Saudi Arabia. Processes 2023, 11 (9), 2515.
https://doi.org/10.3390/pr11092515

[47]. Russom, E.; Kifle, G.; Asgedom, G.; Goje, T. Heavy metals content of spices available on the market of Asmara, Eritrea. Eur. J. Food Res. Rev. EJNFS. 2019, 11 (3), 156-163.
https://doi.org/10.9734/ejnfs/2019/v11i330158

[48]. Iwegbue, C. M. A.; Overah, C. L.; Ebigwai, J. K.; Nwozo, S. O.; Nwajei, G. E.; Eguavoen, O. Heavy metal contamination of some vegetables and spices in Nigeria. Int. J. Biol. Chem. Sci. 2011, 5 (2), 766-773.
https://doi.org/10.4314/ijbcs.v5i2.72150

[49]. Özcan, M.; Akbulut, M. Estimation of minerals, nitrate and nitrite contents of medicinal and aromatic plants used as spices, condiments and herbal tea. Food Chem. 2008, 106 (2), 852-858.
https://doi.org/10.1016/j.foodchem.2007.06.045

[50]. Aloud, S. S.; Alotaibi, K. D.; Almutairi, K. F.; Albarakah, F. N. Assessment of heavy metals accumulation in soil and native plants in an industrial environment, Saudi Arabia. Sustainability 2022, 14 (10), 5993.
https://doi.org/10.3390/su14105993

[51]. Amin, M. A.; Rahman, M. E.; Hossain, S.; Rahman, M.; Rahman, M. M.; Jakariya, M.; Sikder, M. T. Trace Metals in Vegetables and Associated Health Risks in Industrial Areas of Savar, Bangladesh. J. Health Pollut. 2020, 10 (27), 200905.
https://doi.org/10.5696/2156-9614-10.27.200905

[52]. Divrikli, U.; Horzum, N.; Soylak, M.; Elci, L. Trace heavy metal contents of some spices and herbal plants from western Anatolia, Turkey. Int. J. of Food Sci. Tech. 2006, 41 (6), 712-716.
https://doi.org/10.1111/j.1365-2621.2005.01140.x

[53]. Abou-Arab, A. A.; Abou Donia, M. A. Heavy Metals in Egyptian Spices and Medicinal Plants and the Effect of Processing on Their Levels. J. Agric. Food Chem. 2000, 48 (6), 2300-2304.
https://doi.org/10.1021/jf990508p

[54]. Arora, M.; Kiran, B.; Rani, S.; Rani, A.; Kaur, B.; Mittal, N. Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem. 2008, 111 (4), 811-815.
https://doi.org/10.1016/j.foodchem.2008.04.049

[55]. Nkansah, M.; Amoako, C. Heavy metal content of some common spices available in markets in the Kumasi metropolis of Ghana. AJSIR. 2010, 1 (2), 158-163.
https://doi.org/10.5251/ajsir.2010.1.2.158.163

[56]. Rubio, C.; Hardisson, A.; Martín, R.; Báez, A.; Martín, M.; Álvarez, R. Mineral composition of the red and green pepper (Capsicum annuum ) from Tenerife Island. Eur. Food Res. Technol. 2002, 214 (6), 501-504.
https://doi.org/10.1007/s00217-002-0534-x

[57]. Adugna, T.; Selale, G.; Regassa, G. Assessment of Heavy Metal Contents in Some Common Spices Available in the Local Market of North Shewa Zone, Oromia Regional State, Ethiopia. Biol Trace Elem Res 2023, 202 (7), 3349-3361.
https://doi.org/10.1007/s12011-023-03921-8

[58]. Aschale, M.; Sileshi, Y.; Kelly-Quinn, M. Health risk assessment of potentially toxic elements via consumption of vegetables irrigated with polluted river water in Addis Ababa, Ethiopia. Environ. Syst. Res. 2019, 8 (1), 29, 1-13.
https://doi.org/10.1186/s40068-019-0157-x

[59]. Parizanganeh, A. H.; Bijnavand, V.; Zamani, A. A.; Hajabolfath, A. concentration, distribution and comparison of total and bioavailable heavy metals in top soils of Bonab District in Zanjan Province. Open J. Soil. Sci. OJSS. 2012, 02 (02), 123-132.
https://doi.org/10.4236/ojss.2012.22018

[60]. Miller, J. N.; Miller, J. C. Statistics and chemometrics for analytical chemistry, 5th ed.; Harlow, England: Pearson. 2005.

[61]. Tavares, L. d.; Carvalho, A. M.; Machado, L. G. An Evaluation of the Use of Statistical Procedures in Soil Science. Rev. Bras. Ciênc. Solo 2016, 40, e0150246.
https://doi.org/10.1590/18069657rbcs20150246

[62]. Tefera, M.; Teklewold, A. Health risk assessment of heavy metals in selected Ethiopian spices. Heliyon 2021, 7 (5), e07048.
https://doi.org/10.1016/j.heliyon.2021.e07048

[63]. Dariyan, F. S.; Eslami, A.; Rezaeiarshad, N.; Hashemi, M. Health risk assessment of heavy metals concentrations in spices obtained from markets: A case study in Tehran, Iran. J. Food Compost. Anal. 2025, 139, 107152.
https://doi.org/10.1016/j.jfca.2024.107152

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).