European Journal of Chemistry

Synthesis, crystal structure, and Hirshfeld surface analysis of a cubane-type tetranuclear polyoxotitanate cluster

Crossmark


Main Article Content

Jayanta Kumar Nath

Abstract

A cubane-type tetranuclear polyoxotitanate cluster derived from 8-(isopropoxycarbonyl)-1-naphthoic acid is reported which is synthesized under reflux conditions in isopropanol (HOiPr). The ligand 8-(isopropoxycarbonyl)-1-naphthoic acid (INA) was generated in situ from 1,8-naphthalic anhydride and isopropyl alcohol in the reaction mixture where one of the carboxylate groups of 1,8-naphthalene dicarboxylic acid (generated from the ring opening reaction of 1,8-naphthalic anhydride) forms isopropyl ester by reacting with solvent isopropoxide. The solid-state structural elucidation of the cluster is achieved through the single crystal X-ray diffraction method, providing detailed insights into their molecular arrangements. Crystal data for C72H80O24Ti4: Triclinic, space group P-1 (no. 2), a = 19.086(3) Å, b = 20.341(4) Å, c = 21.538(4) Å, α = 88.895(4)°, β = 72.158(4)°, γ = 89.049(4)°, V = 7958(3) Å3, Z = 4, T = 293(2) K, μ(MoKα) = 0.457 mm-1, Dcalc = 1.269 g/cm3, 64356 reflections measured (4.42° ≤ 2Θ ≤ 54.94°), 34455 unique (Rint = 0.0458, Rsigma = 0.0752) which were used in all calculations. The final R1 was 0.0603 (>2sigma(I)) and wR2 was 0.1558 (all data). In the crystal lattice, the asymmetric unit of the cluster contains two molecules. Various types of supramolecular interactions such as C-H···O, C-H···π, π···π and unusual O···O interactions are observed in the X-ray structures. All these interactions guide the formation of 3D supramolecular architecture in the solid state of the compound. In addition to these, 2D fingerprint (2D-FP) and Hirshfeld surface analysis (HSA) computations were used to prove and quantify various supramolecular interactions within the crystal lattice.


icon graph This Abstract was viewed 9 times | icon graph Article PDF downloaded 2 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Nath, J. K. Synthesis, Crystal Structure, and Hirshfeld Surface Analysis of a Cubane-Type Tetranuclear Polyoxotitanate Cluster. Eur. J. Chem. 2025, 16, 146-153.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Schubert, U. Titanium‐Oxo Clusters with Bi‐ and Tridentate Organic Ligands: Gradual Evolution of the Structures from Small to Big. Chemistry A. European J. 2021, 27 (44), 11239-11256.
https://doi.org/10.1002/chem.202101287

[2]. Fang, W.; Zhang, L.; Zhang, J. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem. Soc. Rev. 2018, 47 (2), 404-421.
https://doi.org/10.1039/C7CS00511C

[3]. Zhu, Q.; Dai, J. Titanium oxo/alkoxyl clusters anchored with photoactive ligands. Coord. Chem. Rev. 2021, 430, 213664.
https://doi.org/10.1016/j.ccr.2020.213664

[4]. Fan, Y.; Cui, Y.; Zou, G.; Duan, R.; Zhang, X.; Dong, Y.; Lv, H.; Cao, J.; Jing, Q. A ferrocenecarboxylate-functionalized titanium-oxo-cluster: the ferrocene wheel as a sensitizer for photocurrent response. Dalton Trans. 2017, 46 (25), 8057-8064.
https://doi.org/10.1039/C7DT01756A

[5]. Fan, X.; Wang, J.; Wu, K.; Zhang, L.; Zhang, J. Isomerism in Titanium‐Oxo Clusters: Molecular Anatase Model with Atomic Structure and Improved Photocatalytic Activity. Angew Chem Int Ed 2018, 58 (5), 1320-1323.
https://doi.org/10.1002/anie.201809961

[6]. Piszczek, P.; Radtke, A.; Muzioł, T.; Richert, M.; Chojnacki, J. The conversion of multinuclear μ-oxo titanium(iv) species in the reaction of Ti(OiBu)4 with branched organic acids; results of structural and spectroscopic studies. Dalton Trans. 2012, 41 (27), 8261.
https://doi.org/10.1039/c2dt12338j

[7]. Kubiak, B.; Muzioł, T.; Wrzeszcz, G.; Radtke, A.; Golińska, P.; Jędrzejewski, T.; Wrotek, S.; Piszczek, P. Structural characterization and bioactivity of a titanium(IV)-oxo complex stabilized by mandelate ligands. Molecules 2024, 29(8), 1736.
https://doi.org/10.3390/molecules29081736

[8]. Papiernik, R.; Hubert-Pfalzgraf, L. G.; Vaissermann, J.; Goncalves, M. C. Synthesis and characterization of new titanium hexanuclear oxo carboxylato alkoxides. Molecular structure of [Ti6(μ3-O)6(μ-O2CC6H4OPh)6(OEt)6]. J. Chem. Soc., Dalton Trans. 1998, 2285-2288.
https://doi.org/10.1039/a803266a

[9]. Lv, H.; Li, H.; Zou, G.; Cui, Y.; Huang, Y.; Fan, Y. Titanium-oxo clusters functionalized with catecholate-type ligands: modulating the optical properties through charge-transfer transitions. Dalton Trans. 2018, 47 (24), 8158-8163.
https://doi.org/10.1039/C8DT01844H

[10]. Ge, M.; Cao, C.; Huang, J.; Li, S.; Chen, Z.; Zhang, K.; Al-Deyab, S. S.; Lai, Y. A review of one-dimensional TiO2nanostructured materials for environmental and energy applications. J. Mater. Chem. A. 2016, 4 (18), 6772-6801.
https://doi.org/10.1039/C5TA09323F

[11]. Bai, Y.; Mora-Seró, I.; De Angelis, F.; Bisquert, J.; Wang, P. Titanium Dioxide Nanomaterials for Photovoltaic Applications. Chem. Rev. 2014, 114 (19), 10095-10130.
https://doi.org/10.1021/cr400606n

[12]. Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-38.
https://doi.org/10.1038/238037a0

[13]. Toivola, M.; Halme, J.; Miettunen, K.; Aitola, K.; Lund, P. D. Nanostructured dye solar cells on flexible substrates-Review. Int. J. Energy Res. 2009, 33 (13), 1145-1160.
https://doi.org/10.1002/er.1605

[14]. Han, F.; Kambala, V. S.; Srinivasan, M.; Rajarathnam, D.; Naidu, R. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Appl. Catal. A: Gen. 2009, 359 (1-2), 25-40.
https://doi.org/10.1016/j.apcata.2009.02.043

[15]. Kubiak, B.; Piszczek, P.; Radtke, A.; Muzioł, T.; Wrzeszcz, G.; Golińska, P. Photocatalytic and Antimicrobial Activity of Titanium(IV)-Oxo Clusters of Different Core Structure. Crystals 2023, 13 (7), 998.
https://doi.org/10.3390/cryst13070998

[16]. Hong, Z.; Xu, S.; Yan, Z.; Lu, D.; Kong, X.; Long, L.; Zheng, L. A Large Titanium Oxo Cluster Featuring a Well-Defined Structural Unit of Rutile. Cryst. Growth amp; Des. 2018, 18 (9), 4864-4868.
https://doi.org/10.1021/acs.cgd.8b00904

[17]. Rozes, L.; Sanchez, C. Titanium oxo-clusters: precursors for a Lego-like construction of nanostructured hybrid materials. Chem. Soc. Rev. 2011, 40 (2), 1006.
https://doi.org/10.1039/c0cs00137f

[18]. Tomita, K.; Petrykin, V.; Kobayashi, M.; Shiro, M.; Yoshimura, M.; Kakihana, M. A Water‐Soluble Titanium Complex for the Selective Synthesis of Nanocrystalline Brookite, Rutile, and Anatase by a Hydrothermal Method. Angew Chem Int Ed 2006, 45 (15), 2378-2381.
https://doi.org/10.1002/anie.200503565

[19]. Coppens, P.; Chen, Y.; Trzop, E. Crystallography and Properties of Polyoxotitanate Nanoclusters. Chem. Rev. 2014, 114 (19), 9645-9661.
https://doi.org/10.1021/cr400724e

[20]. Nunzi, F.; De Angelis, F. Modeling titanium dioxide nanostructures for photocatalysis and photovoltaics. Chem. Sci. 2022, 13, 9485-9497.
https://doi.org/10.1039/D2SC02872G

[21]. Nath, J. K. Syntheses and Crystal Structures of Dinuclear Metallacycles of Mn(II), Co(II), Ni(II), Cu(II) and Cd(II) of 1,8-Naphthalene Dicarboxylate Exhibiting Dihydrogen Contact. J. Struct Chem 2023, 64 (6), 1021-1039.
https://doi.org/10.1134/S0022476623060069

[22]. Nath, J. K. Syntheses, structural insight and hirshfeld surface analysis of two heteroleptic coordination polymer of Cu(II). J. Struct Chem 2023, 64 (9), 1664-1676.
https://doi.org/10.1134/S002247662309010X

[23]. Nath, J. K.; Mondal, A.; Powell, A. K.; Baruah, J. B. Structures, Magnetic Properties, and Photoluminescence of Dicarboxylate Coordination Polymers of Mn, Co, Ni, Cu Having N-(4-Pyridylmethyl)-1,8-naphthalimide. Cryst. Growth amp; Des. 2014, 14 (9), 4735-4748.
https://doi.org/10.1021/cg500882z

[24]. Nath, J. K.; Kirillov, A. M.; Baruah, J. B. Unusual solvent-mediated hydrolysis of dicarboxylate monoester ligands in copper(ii) complexes toward simultaneous crystallization of new dicarboxylate derivatives. RSC Adv, 2014, 4 (88), 47876-47886.
https://doi.org/10.1039/C4RA05776G

[25]. Wang, Z.; Gupta, R. K.; Alkan, F.; Han, B.; Feng, L.; Huang, X.; Gao, Z.; Tung, C.; Sun, D. Dicarboxylic Acids Induced Tandem Transformation of Silver Nanocluster. J. Am. Chem. Soc. 2023, 145 (36), 19523-19532.
https://doi.org/10.1021/jacs.3c01119

[26]. Wang, C.; Liu, C.; Li, L. J.; Sun, Z. Synthesis, Crystal Structures, and Photochemical Properties of a Family of Heterometallic Titanium Oxo Clusters. Inorg. Chem. 2019, 58 (9), 6312-6319.
https://doi.org/10.1021/acs.inorgchem.9b00508

[27]. Chebbi, S.; Allouche, A.; Schwarz, M.; Rabhi, S.; Belkacemi, H.; Merabet, D. Treatment of produced water by induced air flotation: effect of both TWEEN 80 and ethanol concentrations on the recovery of PAHs. Nova Biotechnol. Chim. 2018, 17 (2), 181-192.
https://doi.org/10.2478/nbec-2018-0019

[28]. Irshad, R.; Asim, S.; Mansha, A.; Arooj, Y. Naphthalene and its Derivatives: Efficient Fluorescence Probes for Detecting and Imaging Purposes. J. Fluoresc 2023, 33 (4), 1273-1303.
https://doi.org/10.1007/s10895-023-03153-y

[29]. Bruker (2009). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

[30]. Sheldrick, G. M. Crystal structure refinement withSHELXL. Acta Crystallogr C. Struct Chem 2015, 71 (1), 3-8.
https://doi.org/10.1107/S2053229614024218

[31]. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl Crystallogr 2009, 42 (2), 339-341.
https://doi.org/10.1107/S0021889808042726

[32]. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr D. Biol Crystallogr 2009, 65 (2), 148-155.
https://doi.org/10.1107/S090744490804362X

[33]. Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl Crystallogr 2020, 53 (1), 226-235.
https://doi.org/10.1107/S1600576719014092

[34]. Brandenburg, K.; Putz, H. 1999, DIAMOND. Crystal Impact GbR, Bonn, Germany.

[35]. Radtke, A.; Piszczek, P.; Muzioł, T.; Wojtczak, A. The structural conversion of multinuclear titanium(IV) μ-oxo-complexes. Inorg. Chem. 2014, 53, 10803-10810.
https://doi.org/10.1021/ic5002545

[36]. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl Crystallogr 2021, 54 (3), 1006-1011.
https://doi.org/10.1107/S1600576721002910

[37]. Tsering, D.; Dey, P.; Kapoor, K. K.; Seth, S. K. An Energetic and Topological Approach to Understanding the Interplay of Noncovalent Interactions in a Series of Crystalline Spiropyrrolizine Compounds. ACS Omega 2024, 9, 36242-36258.
https://doi.org/10.1021/acsomega.4c02511

[38]. Gumus, I.; Solmaz, U.; Binzet, G.; Keskin, E.; Arslan, B.; Arslan, H. Hirshfeld surface analyses and crystal structures of supramolecular self-assembly thiourea derivatives directed by non-covalent interactions. J. Mol. Struct. 2018, 1157, 78-88.
https://doi.org/10.1016/j.molstruc.2017.12.017

[39]. de Almeida, L. R.; Carvalho, P. S.; Napolitano, H. B.; Oliveira, S. S.; Camargo, A. J.; Figueredo, A. S.; de Aquino, G. L.; Carvalho-Silva, V. H. Contribution of Directional Dihydrogen Interactions in the Supramolecular Assembly of Single Crystals: Quantum Chemical and Structural Investigation of C17H17N3O2 Azine. Cryst. Growth amp; Des. 2017, 17 (10), 5145-5153.
https://doi.org/10.1021/acs.cgd.7b00585

[40]. Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Noncovalent synthesis using hydrogen bonding. Angew. Chem. Int. Ed Engl. 2001, 40, 2382-2426.
https://doi.org/10.1002/1521-3773(20010702)40:13<2382::AID-ANIE2382>3.0.CO;2-G

[41]. Echeverría, J.; Aullón, G.; Danovich, D.; Shaik, S.; Alvarez, S. Dihydrogen contacts in alkanes are subtle but not faint. Nature Chem 2011, 3 (4), 323-330.
https://doi.org/10.1038/nchem.1004

[42]. Echeverría, J.; Aullón, G.; Alvarez, S. Dihydrogen intermolecular contacts in group 13 compounds: H⋯H or E⋯H (E = B, Al, Ga) interactions?. Dalton Trans. 2017, 46 (9), 2844-2854.
https://doi.org/10.1039/C6DT02854C

[43]. Islam, S.; Dey, P.; Seth, S. K. Structural elucidation and various computational studies for quantitative investigation of intermolecular interactions in pyridine-2,6-dicarboxylic acid and its di-hydrate. J. Mol. Struct. 2024, 1311, 138433.
https://doi.org/10.1016/j.molstruc.2024.138433

[44]. Znovjyak, K.; Seredyuk, M.; Malinkin, S. O.; Shova, S.; Soliev, L. Crystal structure of {N1,N3-bis[(1-benzyl-1H-1,2,3-triazol-4-yl)methylidene]-2,2-dimethylpropane-1,3-diamine}bis(thiocyanato-κN)iron(II). Acta Crystallogr E. Cryst Commun 2020, 76 (10), 1661-1664.
https://doi.org/10.1107/S2056989020012608

[45]. Chaisuriya, W.; Chainok, K.; Wannarit, N. Crystal structure and Hirshfeld surface analysis of a new mononuclear copper(II) complex: [bis-(pyridin-2-yl-κN)amine](formato-κO)(m-hy-droxy-benzoato-κ2O,O')copper(II). Acta Crystallogr. E Crystallogr. Commun. 2023, 79, 1115-1120.
https://doi.org/10.1107/S2056989023009234

[46]. Al-Dies, A. M.; Alblewi, F. F.; Okasha, R. M.; Alsehli, M. H.; Borik, R. M.; Ihmaid, S.; Amr, A. E.; Ghabbour, H. A.; Elhenawy, A. A.; El-Agrody, A. M. Synthesis, crystal structure, hirshfeld study, DFT analysis, molecular docking study, antimicrobial activity of β-enaminonitrile bearing 1H-pyran. Discov Appl Sci 2025, 7 (1).
https://doi.org/10.1007/s42452-024-06254-w

[47]. Qin, Z.; He, J.; Zhu, Y.; Wei, X.; Wang, J.; Zheng, G.; Mo, S.; Zhou, B.; Long, F. Crystal structure and electrical conduction of the new organic-inorganic compound (C7H10N)2MnCl4. J. Mol. Struct. 2023, 1281, 135080.
https://doi.org/10.1016/j.molstruc.2023.135080

[48]. Abdullah, S.; Deka, S.; Abid, F.; Sharma, S.; Nath, J. K.; Rajbongshi, B. K. Synthesis, structural investigation and Hirshfeld surface analyses of two imidazolinone based heterocyclic compounds. J. Struct. Chem. 2024, 65, 1805-1815.
https://doi.org/10.1134/S0022476624090117

[49]. Nath, J. K.; Borah, R. A lanthanide cluster formed by fixing atmospheric CO2 to carbonate: a molecular magnetic refrigerant and photoluminescent material. J. Chem Sci 2023, 135 (3).
https://doi.org/10.1007/s12039-023-02176-z

[50]. Nath, J. K. Synthesis, supramolecular insight, Hirshfeld surface analyses and optical properties of Fe(II) and Cu(II) complexes of flexible imidazole tethered 1,8-naphthalimide. Transit Met Chem 2024, 49 (3), 171-181.
https://doi.org/10.1007/s11243-024-00572-z

[51]. Stenfors, B. A.; Ngassa, F. N. Crystal structure of 2,4-dinitrophenyl 2,4,6-trimethylbenzenesulfonate. Eur. J. Chem. 2022, 13 (2), 145-150.
https://doi.org/10.5155/eurjchem.13.2.145-150.2279

Supporting Agencies

ANRF (SERB-TARE) for research grant with file no. TAR/2023/000221.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).