European Journal of Chemistry

Comprehensive DFT analysis of BeHfO3 perovskite: Exploring the structure, mechanical, thermodynamic, and optic properties

Crossmark


Main Article Content

Md Al Masud
Md. Rajib Munshi
Tanvir Chowdhury
Mita Chakraborty
Rakibul Islam

Abstract

We performed a thorough study of the electronic, mechanical, thermodynamic, and optical properties of the BeHfO3 perovskite crystal using first-principles calculations featuring density functional theory (DFT). Electronic band structure analysis manifested the material to be semiconducting in nature with calculated band gap values of 0.873 eV (PBE), 0.887 eV (RPBE), 0.781 eV (PBEsol), 0.890 eV (LDA), 1.71 eV (HSE06) and 2.925 eV (B3LYP), reflecting considerable uncertainty in terms of exchange-correlation functionals and emphasizing the utility of hybrid functionals in estimating the band gap. Density of states (DOS) and partial density of states (PDOS) analyses were vital in revealing the role of the participating atoms (Be, Hf, and O) in electronic contribution, orbital hybridization, and the major states close to the Fermi level, highlighting the dominant states near the Fermi level and the role played by them in bonding. The Mulliken population analysis also described the electrostatic interaction and charge reorganization, confirming the mixed ionic-covalent nature of the bonds and revealing the complexity in the nature of bonds in the BeHfO3 lattice. Mechanical stability was thoroughly analyzed using the Born mechanical stability criteria (BMS) which validated the mechanical stability of the compound. The calculation of the elastic constants helped to establish Poisson’s ratio and Pugh’s modulus ratio (B/G) to confirm the mechanical strength and ductility of the compound along with the pronounced anisotropy in the elastic properties, which could be valuable in applications requiring directional devices. The calculation of the optical properties in terms of the frequency-dependent dielectric functions and the absorption coefficients using different DFT approaches proved the material to be a powerful absorber in both the ultraviolet (UV) and visible parts of the spectrum, which establishes the material as a valuable contender in the field of optoelectronic and photocatalytic technology.


icon graph This Abstract was viewed 58 times | icon graph Article PDF downloaded 6 times icon graph Article SUPP. MATER. downloaded 0 times

How to Cite
(1)
Al Masud, M.; Munshi, M. R.; Chowdhury, T.; Chakraborty, M.; Islam, R. Comprehensive DFT Analysis of BeHfO3 Perovskite: Exploring the Structure, Mechanical, Thermodynamic, and Optic Properties. Eur. J. Chem. 2025, 16, 292-301.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Deng, M.; Shen, S.; Wang, X.; Zhang, Y.; Xu, H.; Zhang, T.; Wang, Q. Controlled synthesis of AgInS2 nanocrystals and their application in organic-inorganic hybrid photodetectors. CrystEngComm. 2013, 15 (33), 6443.
https://doi.org/10.1039/c3ce40173a

[2]. Holladay, J.; Hu, J.; King, D.; Wang, Y. An overview of hydrogen production technologies. Catalysis Today 2009, 139 (4), 244-260.
https://doi.org/10.1016/j.cattod.2008.08.039

[3]. Sen, S. K.; Munshi, M. R.; Kumar, A.; Mortuza, A. A.; Manir, M. S.; Islam, M. A.; Hossain, M. N.; Hossain, M. K. Structural, optical, magnetic, and enhanced antibacterial properties of hydrothermally synthesized Sm-incorporating α-MoO32D-layered nanoplates. RSC. Adv. 2022, 12 (53), 34584-34600.
https://doi.org/10.1039/D2RA05304G

[4]. Liu, Y.; Zhang, W.; Wang, B.; Sun, L.; Li, F.; Xue, Z.; Zhou, G.; Liu, B.; Nian, H. Theoretical and Experimental Investigations on High Temperature Mechanical and Thermal Properties of BaZrO3. Ceram. Int. 2018, 44 (14), 16475-16482.
https://doi.org/10.1016/j.ceramint.2018.06.064

[5]. Feng, Z.; Hu, H.; Cui, S.; Bai, C. First-principles study of optical properties of SrZrO3 in cubic phase. Solid State Communications 2008, 148 (9-10), 472-475.
https://doi.org/10.1016/j.ssc.2008.08.030

[6]. Islam, M. T.; Kumer, A.; Chakma, U.; Howlader, D. A Computational Investigation of Electronic Structure and Optical Properties of AlCuO2 and AlCu0.96Fe0.04O2: A First Principle Approach. Orbital: Electron J. Chem. 2021, 13 (1).
https://doi.org/10.17807/orbital.v13i1.1533

[7]. Amisi, S.; Bousquet, E.; Katcho, K.; Ghosez, P. First-principles study of structural and vibrational properties of SrZrO3. Phys. Rev. B 2012, 85 (6), 064112.
https://doi.org/10.1103/PhysRevB.85.064112

[8]. Amisi, S. First-principles study of structural and vibrational properties of SrHfO3 compared to SrZrO3. Computational Condensed Matter. 2019, 20, e00383.
https://doi.org/10.1016/j.cocom.2019.e00383

[9]. Kang, S. G.; Sholl, D. S. First‐principles investigation of chemical stability and proton conductivity of M‐doped BaZrO3 (M=K, Rb, and Cs). J. Am. Ceram. Soc. 2017, 100 (7), 2997-3003.
https://doi.org/10.1111/jace.14839

[10]. Liu, Q.; Liu, Z.; Feng, L.; Tian, H. Mechanical, electronic, chemical bonding and optical properties of cubic BaHfO3: First-principles calculations. Physica. B: Condensed Matter. 2010, 405 (18), 4032-4039.
https://doi.org/10.1016/j.physb.2010.06.051

[11]. Husain, M.; Albalawi, H.; Huwayz, M. A.; Al Saqri, N. a.; Khan, R.; Rahman, N. Computational insight into the fundamental physical properties of ternary ABCl3 chloroperovskites compounds using the DFT approach. Phys. Scr. 2023, 98 (10), 105935.
https://doi.org/10.1088/1402-4896/acf695

[12]. Rahman, N.; Husain, M.; Tirth, V.; Algahtani, A.; Alqahtani, H.; Al-Mughanam, T.; Alghtani, A. H.; Khan, R.; Sohail, M.; Khan, A. A.; Azzouz-Rached, A.; Khan, A. Appealing perspectives of the structural, electronic, elastic and optical properties of LiRCl3 (R = Be and Mg) halide perovskites: a DFT study. RSC. Adv. 2023, 13 (27), 18934-18945.
https://doi.org/10.1039/D3RA02640J

[13]. Pasha, A. A.; Khan, H.; Sohail, M.; Rahman, N.; Khan, R.; Alsalmi, O. H.; Abduvalieva, D.; Abualnaja, K. M.; El Jery, A.; Adrdery, M. Computational study of the physical characteristics of Si-based oxide perovskites for energy generation using DFT. Mater. Adv. 2023, 4 (24), 6645-6654.
https://doi.org/10.1039/D3MA00537B

[14]. Haoui, A.; Elchikh, M.; Hiadsi, S. Mechanical, optoelectronic and thermoelectric properties of the transition metal oxide perovskites YScO3 and LaScO3: First principle calculation. Physica. B: Condensed Matter. 2023, 654, 414732.
https://doi.org/10.1016/j.physb.2023.414732

[15]. Shah, S. A.; Husain, M.; Rahman, N.; Sohail, M.; Khan, R.; Khan, A. A.; Ullah, A.; Abdelmohsen, S. A.; Abdelbacki, A. M.; El-Sabrout, A. M.; Elansary, H. O.; Khan, A. Insight into the exemplary structural, elastic, electronic and optical nature of GaBeCl3and InBeCl3: a DFT study. RSC. Adv. 2022, 12 (13), 8172-8177.
https://doi.org/10.1039/D2RA00943A

[16]. Ullah, W.; Husain, M.; Rahman, N.; Sfina, N.; Elhadi, M.; Khan, R.; Sohail, M.; Azzouz-Rached, A.; Uzair, M.; Khan, A. A.; Khan, A. Computational Analysis of Structural, Elastic, and Optoelectronic Properties of Silicon-Based XSiO3 (X = Sc and Y) Oxide Perovskite Compounds Employing the Density Functional Theory Approach. Silicon 2024, 16 (7), 3021-3032.
https://doi.org/10.1007/s12633-024-02898-w

[17]. Husain, M.; Rahman, N.; Albalawi, H.; Ezzine, S.; Amami, M.; Zaman, T.; Rehman, A. U.; Sohail, M.; Khan, R.; Khan, A. A.; Tahir; Khan, A. Examining computationally the structural, elastic, optical, and electronic properties of CaQCl3 (Q = Li and K) chloroperovskites using DFT framework. RSC. Adv. 2022, 12 (50), 32338-32349.
https://doi.org/10.1039/D2RA05602J

[18]. Shah, S. A.; Husain, M.; Rahman, N.; Sohail, M.; Khan, R.; Alataway, A.; Dewidar, A. Z.; Elansary, H. O.; Abu El Maati, L.; Yessoufou, K.; Ullah, A.; Khan, A. Insight into the Structural, Electronic, Elastic, Optical, and Magnetic Properties of Cubic Fluoroperovskites ABF3 (A = Tl, B = Nb, V) Compounds: Probed by DFT. Materials 2022, 15 (16), 5684.
https://doi.org/10.3390/ma15165684

[19]. Khan, M. S.; Sohail, M.; Rahman, N.; khan, R.; Ali, H. E.; Jamil, J.; Abdullaeva, B. S.; Abualnaja, K. M.; Alosaimi, G.; Khairy, Y.; Algarni, H. Investigation of the structural, electronic, magnetic, mechanical, and optical properties of calcium-based CaJO3 (J = Mn, Ru) perovskites: A first-principle computations. Chem. Pap. 2024, 79 (1), 95-105.
https://doi.org/10.1007/s11696-024-03675-0

[20]. Alrashidi, K. A.; Dixit, A.; Nazir, A.; Khera, E. A.; Mohammad, S.; Manzoor, M.; Khan, R.; Sharma, R. A DFT Approach to Insight on the Structural, Optoelectronic and Thermoelectric Properties of Cubic Perovskites YXO3 (X = Ga, In) for Renewable Energy Applications. J. Inorg. Organomet. Polym. 2024, 35 (3), 1764-1778.
https://doi.org/10.1007/s10904-024-03362-3

[21]. Akhtar, S.; Alay-e-Abbas, S. M.; Abbas, S. M.; Arshad, M. I.; Batool, J.; Amin, N. First-principles evaluation of electronic and optical properties of (Mo, C) codoped BaHfO3 for applications in photocatalysis. Journal of Applied Physics 2018, 123 (16).
https://doi.org/10.1063/1.5010969

[22]. Bouhemadou, A.; Djabi, F.; Khenata, R. First Principles Study of Structural, Elastic, Electronic and Optical Properties of the Cubic Perovskite BaHfO3. Phys. Lett. A 2008, 372 (24), 4527-4531.
https://doi.org/10.1016/j.physleta.2008.04.015

[23]. Ahmed, S.; Zulfiqar, W.; Javed, F.; Arshad, H.; Abbas, G.; Laref, A.; Alay-e-Abbas, S. M. Accurate first-principles evaluation of structural, electronic, optical and photocatalytic properties of BaHfO3 and SrHfO3 perovskites. Journal of Alloys and Compounds 2022, 892, 162071.
https://doi.org/10.1016/j.jallcom.2021.162071

[24]. Feng, L.; Liu, Z.; Liu, Q.; Tian, H. First-principles study of electronic and optical properties of Pbnm orthorhombic SrHfO3. Computational Materials Science 2010, 50 (2), 454-458.
https://doi.org/10.1016/j.commatsci.2010.09.003

[25]. Muscat, J.; Wander, A.; Harrison, N. M. On the prediction of band gaps from hybrid functional theory. Chem. Phys. Lett. 2001, 342, 397-401.
https://doi.org/10.1016/S0009-2614(01)00616-9

[26]. Islam, J.; Hossain, A. K. Narrowing band gap and enhanced visible-light absorption of metal-doped non-toxic CsSnCl3 metal halides for potential optoelectronic applications. RSC. Adv. 2020, 10 (13), 7817-7827.
https://doi.org/10.1039/C9RA10407K

[27]. Munshi, M. R.; Masud, M. A.; Khatun, A. Structural, electronic, mechanical, thermodynamic and optical properties of oxide perovskite BeZrO3: a DFT study. Phys. Scr. 2024, 99 (8), 085904.
https://doi.org/10.1088/1402-4896/ad5884

[28]. Zahan, M. S.; Munshi, M. R.; Rana, M. Z.; Al Masud, M. Theoretical insights on geometrical, mechanical, electronic, thermodynamic and photocatalytic characteristics of RaTiO3 compound: A DFT investigation. Computational Condensed Matter. 2023, 36, e00832.
https://doi.org/10.1016/j.cocom.2023.e00832

[29]. Md. Rajib Munshi; Md. Zuel Rana; Sapan Kumar Sen; Md. Ruhul Amin Foisal; Md. Hazrat Ali, Theoretical investigation of structural, electronic, optical and thermoelectric properties of GaAgO2 based on Density Functional Theory (DFT): Two approach. World. J. Adv. Res. Rev. 2022, 13 (2), 279-291.
https://doi.org/10.30574/wjarr.2022.13.2.0130

[30]. Sohail, M.; Husain, M.; Rahman, N.; Althubeiti, K.; Algethami, M.; Khan, A. A.; Iqbal, A.; Ullah, A.; Khan, A.; Khan, R. First-principal investigations of electronic, structural, elastic and optical properties of the fluoroperovskite TlLF3 (L = Ca, Cd) compounds for optoelectronic applications. RSC Adv. 2022, 12, 7002-7008.
https://doi.org/10.1039/D2RA00464J

[31]. Munshi, M. R.; Sen, S. K.; Rana, M. Z. Electronic, thermodynamic, optical and photocatalytic properties of GaAgO2 and AlAgO2 compounds scrutinized via a systemic hybrid DFT. Computational Condensed Matter. 2023, 34, e00778.
https://doi.org/10.1016/j.cocom.2022.e00778

[32]. Rana, M. Z.; Munshi, M. R.; Al Masud, M.; Zahan, M. S. Structural, electronic, optical and thermodynamic properties of AlAuO2 and AlAu094Fe006O2 compounds scrutinized by density functional theory (DFT). Heliyon 2023, 9 (11), e21405.
https://doi.org/10.1016/j.heliyon.2023.e21405

[33]. Chen, X.; Zeng, M.; Wang, R.; Mo, Z.; Tang, B.; Peng, L.; Ding, W. First-principles study of (Ti5−xMgx)Si3 phases with the hexagonal D88 structure: Elastic properties and electronic structure. Computational Materials Science 2012, 54, 287-292.
https://doi.org/10.1016/j.commatsci.2011.10.042

[34]. Rahman, N.; Husain, M.; Yang, J.; Sajjad, M.; Murtaza, G.; Ul Haq, M.; Habib, A.; Zulfiqar; Rauf, A.; Karim, A.; Nisar, M.; Yaqoob, M.; Khan, A. First principle study of structural, electronic, optical and mechanical properties of cubic fluoro-perovskites: (CdXF3, X = Y, Bi). Eur. Phys. J. Plus. 2021, 136 (3).
https://doi.org/10.1140/epjp/s13360-021-01177-6

[35]. Sohail, M.; Husain, M.; Rahman, N.; Althubeiti, K.; Algethami, M.; Khan, A. A.; Iqbal, A.; Ullah, A.; Khan, A.; Khan, R. First-principal investigations of electronic, structural, elastic and optical properties of the fluoroperovskite TlLF3 (L = Ca, Cd) compounds for optoelectronic applications. RSC. Adv. 2022, 12 (12), 7002-7008.
https://doi.org/10.1039/D2RA00464J

[36]. Al‐Qaisi, S.; Mebed, A. M.; Mushtaq, M.; Rai, D. P.; Alrebdi, T. A.; Sheikh, R. A.; Rached, H.; Ahmed, R.; Faizan, M.; Bouzgarrou, S.; Javed, M. A. A theoretical investigation of the lead‐free double perovskites halides Rb2XCl6 (X = Se, Ti) for optoelectronic and thermoelectric applications. J. Comput. Chem. 2023, 44 (19), 1690-1703.
https://doi.org/10.1002/jcc.27119

[37]. Rahman, S.; Hussain, A.; Noreen, S.; Bibi, N.; Arshad, S.; Rehman, J. U.; Tahir, M. B. Structural, electronic, optical and mechanical properties of oxide-based perovskite ABO3 (A = Cu, Nd and B = Sn, Sc): A DFT study. J. Solid State Chem. 2023, 317, 123650.
https://doi.org/10.1016/j.jssc.2022.123650

[38]. Salma, M.; Atikur Rahman, M. Study of structural, elastic, electronic, mechanical, optical and thermodynamic properties of NdPb3 intermetallic compound: DFT based calculations. Computational Condensed Matter. 2018, 15, 42-47.
https://doi.org/10.1016/j.cocom.2018.04.001

[39]. Rehman, J. U.; Usman, M.; Tahir, M. B.; Hussain, A.; Rashid, M. Investigation of Structural, Electronics, Optical, Mechanical and Thermodynamic Properties of YRu2P2 Compound for Superconducting Application. J. Supercond. Nov. Magn. 2021, 34 (12), 3089-3097.
https://doi.org/10.1007/s10948-021-06049-9

[40]. Colmenero, F.; Timón, V. Study of the structural, vibrational and thermodynamic properties of natroxalate mineral using density functional theory. Journal of Solid State Chemistry 2018, 263, 131-140.
https://doi.org/10.1016/j.jssc.2018.04.022

[41]. Ferrari, A. M.; Orlando, R.; Rérat, M. Ab Initio Calculation of the Ultraviolet-Visible (UV-vis) Absorption Spectrum, Electron-Loss Function, and Reflectivity of Solids. J. Chem. Theory. Comput. 2015, 11 (7), 3245-3258.
https://doi.org/10.1021/acs.jctc.5b00199

[42]. Islam, M. A.; Islam, J.; Islam, M. N.; Sen, S. K.; Hossain, A. K. Enhanced ductility and optoelectronic properties of environment-friendly CsGeCl3 under pressure. AIP. Advances 2021, 11 (4), 045014.
https://doi.org/10.1063/5.0048849

[43]. Kora, H. H.; Taha, M.; Abdelwahab, A.; Farghali, A. A.; El-dek, S. I. Effect of pressure on the geometric, electronic structure, elastic, and optical properties of the normal spinel MgFe2O4: a first-principles study. Mater. Res. Express. 2020, 7 (10), 106101.
https://doi.org/10.1088/2053-1591/abc049

[44]. Al-Qaisi, S.; Mushtaq, M.; Alzahrani, J. S.; Alkhaldi, H.; Alrowaili, Z.; Rached, H.; Haq, B. U.; Mahmood, Q.; Al-Buriahi, M.; Morsi, M. First-principles calculations to investigate electronic, structural, optical, and thermoelectric properties of semiconducting double perovskite Ba2YBiO6. Micro. Nanostructures 2022, 170, 207397.
https://doi.org/10.1016/j.micrna.2022.207397

[45]. Dey, A.; Sharma, R.; Dar, S. A.; Wani, I. H. Cubic PbGeO3 perovskite oxide: A compound with striking electronic, thermoelectric and optical properties, explored using DFT studies. Computational Condensed Matter. 2021, 26, e00532.
https://doi.org/10.1016/j.cocom.2020.e00532

[46]. Munshi, M. R.; Zahan, M. S.; Rana, M. Z.; Masud, M. A.; Rashid, R.; Azad, M. A. First principles prediction of structural, electronic, mechanical, thermodynamic, optical and photocatalytic properties of In(X)O2, where X= Cu, Ag crystal scrutinized by hybrid DFT. Computational Condensed Matter. 2024, 38, e00884.
https://doi.org/10.1016/j.cocom.2024.e00884

[47]. Wesch, W.; Rensberg, J.; Schmidt, M.; Wendler, E. Damage evolution in LiNbO3 due to electronic energy deposition below the threshold for direct amorphous track formation. J. Appl. Phys. 2019, 126, 125105.
https://doi.org/10.1063/1.5116667

[48]. Munshi, M. R.; Masud, M. A.; Rahman, M.; Khatun, M. R.; Mian, M. F. First principles prediction of geometrical, electronic, mechanical, thermodynamic, optical and photocatalytic properties of RaZrO3 scrutinized by DFT investigation. Computational Condensed Matter. 2024, 38, e00865.
https://doi.org/10.1016/j.cocom.2023.e00865

[49]. Halim, S. A. TD-DFT calculations, electronic structure, natural bond orbital analysis, nonlinear optical properties electronic absorption spectra and antimicrobial activity application of new bis-spiropipridinon/pyrazole derivatives. Eur. J. Chem. 2018, 9 (4), 287-302.
https://doi.org/10.5155/eurjchem.9.4.287-302.1706

[50]. Ephraim Babu, K.; Veeraiah, A.; Tirupathi Swamy, D.; Veeraiah, V. First-principles study of electronic and optical properties of cubic perovskite CsSrF3. Mater. Sci-Pol. 2012, 30 (4), 359-367.
https://doi.org/10.2478/s13536-012-0047-7

Supporting Agencies

Department of Physics and ICT, European University of Bangladesh, Dhaka-1216, Bangladesh
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).