European Journal of Chemistry

Enzyme-catalyzed kinetic resolution of spirocyclic secondary amines obtained by ring-closing metathesis, as well as synthesis of cyclopentane[c]pyrrole and -pyridines by the Pauson-Khand reaction

Crossmark


Main Article Content

Devrim Özdemirhan
Shafeek Buhlak
Durukan Koç

Abstract

As herein defined; a ring closing metathesis (RCM) reaction of N-anchored homoallylic dienes followed by enzymatic kinetic resolution and ring closing enyne metathesis (RCEM) with an intramolecular Pauson-Khand reaction of N-tethered homopropargylic enynes are described for the first time. RCM afforded azaspirodeca and -undecadiene with 78 and 82% chemical yields, as well as azaspironona and decadienecarboxylates with 65 and 70% chemical yields, respectively. Furthermore, RCEM protocol resulted in conjugated diene 50% chemical yield. Moreover, intramolecular Pauson-Khand reaction is also applied to enynes, which yielded cyclopenta[c]pyrrole-carboxylate as diastereomeric mixtures; besides cyclopenta[c]pyridin-one and cyclopenta[c]pyridin-carboxylate frameworks as single diastereomers. Above all, secondary amines (azaspirodeca and undecadiene) have been efficiently resolved through an enzyme-catalyzed reaction in a moderate ee up to 77 and 20% ee, with their corresponding esters up to 75 and 55% ee, in the presence of CAL-B (being the most effective biocatalyst) and recombinant from Aspergillus oryzae. Both CAL-B and CAL-A-CLEA afforded reverse enantiomeric separation of them for the first time.


icon graph This Abstract was viewed 8 times | icon graph Article PDF downloaded 1 times icon graph Article SUPP. MATER. downloaded 0 times

How to Cite
(1)
Özdemirhan, D.; Buhlak, S.; Koç, D. Enzyme-Catalyzed Kinetic Resolution of Spirocyclic Secondary Amines Obtained by Ring-Closing Metathesis, As Well As Synthesis of cyclopentane[c]pyrrole and -Pyridines by the Pauson-Khand Reaction. Eur. J. Chem. 2025, 16, 356-363.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Diaba, F.; Montiel, J. A.; Martínez-Laporta, A.; Bonjoch, J. Dearomative radical spirocyclization from N-benzyltrichloroacetamides revisited using a copper(I)-mediated atom transfer reaction leading to 2-azaspiro[4.5]decanes. Tetrahedron Lett. 2013, 54 (21), 2619-2622.
https://doi.org/10.1016/j.tetlet.2013.03.019

[2]. Paudler, W. W.; Kerley, G. I.; McKay, J. The Alkaloids of Cephalotaxus drupacea and Cephalotaxus fortunei. J. Org. Chem. 1963, 28 (9), 2194-2197.
https://doi.org/10.1021/jo01044a010

[3]. Arora, S. K.; Bates, R. B.; Grady, R. A.; Powell, R. G. Crystal and molecular structure of cephalotaxine p-bromobenzoate. J. Org. Chem. 1974, 39 (9), 1269-1271.
https://doi.org/10.1021/jo00923a024

[4]. Kuramoto, M.; Tong, C.; Yamada, K.; Chiba, T.; Hayashi, Y.; Uemura, D. Halichlorine, an Inhibitor of VCAM-1 Induction from the Marine Sponge Halichondria Okadai Kadata. Tetrahedron Lett. 1996, 37 (22), 3867-3870.
https://doi.org/10.1016/0040-4039(96)00703-4

[5]. Arimoto, H.; Hayakawa, I.; Kuramoto, M.; Uemura, D. Absolute Stereochemistry of Halichlorine; A Potent Inhibitor of VCAM-1 Induction. Tetrahedron Lett. 1998, 39 (8), 861-862.
https://doi.org/10.1016/S0040-4039(97)10714-6

[6]. Sakamoto, K.; Tsujii, E.; Abe, F.; Nakanishi, T.; Yamashita, M.; Shigematsu, N.; Izumi, S.; Okuhara, M. FR901483, a Novel Immunosuppressant Isolated from Cladobotryum sp. No. 11231. Taxonomy of the Producing Organism, Fermentation, Isolation, Physico-chemical Properties and Biological Activities. J. Antibiot. 1996, 49 (1), 37-44.
https://doi.org/10.7164/antibiotics.49.37

[7]. Huang, S.; Tian, X.; Mi, X.; Wang, Y.; Hong, R. Nitroso-ene cyclization enabled access to 1-azaspiro[4.4]nonane and its application in a modular synthesis toward (±)-cephalotaxine. Tetrahedron Lett. 2015, 56 (48), 6656-6658.
https://doi.org/10.1016/j.tetlet.2015.10.002

[8]. Yang, Y.; Chang, F.; Wu, Y. Annosqualine: a Novel Alkaloid from the Stems of Annona squamosa. Helvetica Chim. Acta 2004, 87 (6), 1392-1399.
https://doi.org/10.1002/hlca.200490127

[9]. Shigehisa, H.; Takayama, J.; Honda, T. The first total synthesis of (±)-annosqualine by means of oxidative enamide-phenol coupling: pronounced effect of phenoxide formation on the phenol oxidation mechanism. Tetrahedron Lett. 2006, 47 (41), 7301-7306.
https://doi.org/10.1016/j.tetlet.2006.08.028

[10]. Sandmeier, P.; Tamm, C. New Spirostaphylotrichins from the Mutant Strain P 649 of Staphylotrichum coccosporum: The Biogenetic Interrelationship of the Known Spirostaphylotrichins. Helvetica Chim. Acta 1990, 73 (4), 975-984.
https://doi.org/10.1002/hlca.19900730424

[11]. Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W. Syntheses and activities of new single-component, ruthenium-based olefin metathesis catalysts. J. Am. Chem. Soc. 1993, 115 (21), 9858-9859.
https://doi.org/10.1021/ja00074a086

[12]. Allen, C. E.; Chow, C. L.; Caldwell, J. J.; Westwood, I. M.; M. van Montfort, R. L.; Collins, I. Synthesis and evaluation of heteroaryl substituted diazaspirocycles as scaffolds to probe the ATP-binding site of protein kinases. Bioorg. Med. Chem. 2013, 21 (18), 5707-5724.
https://doi.org/10.1016/j.bmc.2013.07.021

[13]. Cheng, X.; Waters, S. P. Concise Total Syntheses of the Lycopodium Alkaloids (±)-Nankakurines A and B via Luciduline. Org. Lett. 2010, 12 (2), 205-207.
https://doi.org/10.1021/ol902455y

[14]. Handbook of Metathesis: 3 Volume Set; Grubbs, R. H., Wenzel, A. G., O'Leary, D. J., Khosravi, E., Eds.; Wiley-VCH Verlag: Weinheim, Germany, 2015.

[15]. Hallock, Y. F.; Lu, H. S.; Clardy, J.; Strobel, G. A.; Sugawara, F.; Samsoedin, R.; Yoshida, S. Triticones, Spirocyclic Lactams from the Fungal Plant Pathogen Drechslera tritici-repentis. J. Nat. Prod. 1993, 56 (5), 747-754.
https://doi.org/10.1021/np50095a012

[16]. Kotha, S.; Aswar, V. R.; Ansari, S. Selectivity in Ring‐Closing Metathesis: Synthesis of Propellanes and Angular Aza‐tricycles. Adv. Synth. Catal. 2019, 361 (6), 1376-1382.
https://doi.org/10.1002/adsc.201801123

[17]. Yet, L. Organic Reactions, Olefin Ring Closing Methathesis; Wiley Online Library, 2016.
https://doi.org/10.1002/0471264180.or089.01

[18]. Wright, D. L.; Schulte, J. P.; Page, M. A. An Imine Addition/Ring-Closing Metathesis Approach to the Spirocyclic Core of Halichlorine and Pinnaic Acid. Org. Lett. 2000, 2 (13), 1847-1850.
https://doi.org/10.1021/ol005903b

[19]. Prusov, E.; Maier, M. E. Synthesis of nitrogen-containing spirocyclic scaffolds via aminoallylation/RCM sequence. Tetrahedron 2007, 63 (42), 10486-10496.
https://doi.org/10.1016/j.tet.2007.07.083

[20]. Jingwei, L.; Daesung, L. Editors: Grubbs, R. H., Wenzel, A. G., O' Learey, D. J., Khosravi, E. Chapter 5 (Enyne Metatesis) in Handbook of Metatesis, Wiley-VCH Verlag: Weinheim, Germany, 2015.

[21]. Katz, T. J.; Sivavec, T. M. Metal-catalyzed rearrangement of alkene-alkynes and the stereochemistry of metallacyclo butene ring opening. J. Am. Chem. Soc. 1985, 107 (3), 737-738.
https://doi.org/10.1021/ja00289a054

[22]. Mori, M.; Sakakibara, N.; Kinoshita, A. Remarkable Effect of Ethylene Gas in the Intramolecular Enyne Metathesis of Terminal Alkynes. J. Org. Chem. 1998, 63 (18), 6082-6083.
https://doi.org/10.1021/jo980896e

[23]. Schuster, M.; Blechert, S. Olefin Metathesis in Organic Chemistry. Angew. Chem. Int. Ed. Engl. 1997, 36 (19), 2036-2056.
https://doi.org/10.1002/anie.199720361

[24]. Pradhan, R.; Patra, M.; Behera, A. K.; Mishra, B. K.; Behera, R. K. A synthon approach to spiro compounds. Tetrahedron 2006, 62 (5), 779-828.
https://doi.org/10.1016/j.tet.2005.09.039

[25]. Quintal, M. M.; Closser, K. D.; Shea, K. M. Tandem Intramolecular Nicholas and Pauson−Khand Reactions for the Synthesis of Tricyclic Oxygen-Containing Heterocycles. Org. Lett. 2004, 6 (26), 4949-4952.
https://doi.org/10.1021/ol0479141

[26]. Brummond, K. M.; Kent, J. L. Recent Advances in the Pauson-Khand Reaction and Related [2+2+1] Cycloadditions. Tetrahedron 2000, 56 (21), 3263-3283.
https://doi.org/10.1016/S0040-4020(00)00148-4

[27]. Cabot, R.; Lledó, A.; Revés, M.; Riera, A.; Verdaguer, X. Kinetic Studies on the Cobalt-Catalyzed Norbornadiene Intermolecular Pauson−Khand Reaction. Organometallics 2007, 26 (5), 1134-1142.
https://doi.org/10.1021/om060935+

[28]. Srikrishna, A.; Viswajanani, R.; Sattigeri, J. A. A Radical Cyclisation Based Cyclopentenone Annulation of Allyl Alcohols. Tetrahedron Asymmetry 2003, 14 (19), 2975-2983.
https://doi.org/10.1016/S0957-4166(03)00535-4

[29]. Puigbó, G.; Diaba, F.; Bonjoch, J. Synthesis of Enantiopure 3-Amino-1-Azaspiro[4.5]Decan-8-Ones by Halonium Promoted Cyclization of Amino-Tethered Cyclohexenes. Tetrahedron 2003, 59 (15), 2657-2665.
https://doi.org/10.1016/S0040-4020(03)00309-0

[30]. Päiviö, M.; Perkiö, P.; Kanerva, L. T. Solvent-Free Kinetic Resolution of Primary Amines Catalyzed by Candida Antarctica Lipase B: Effect of Immobilization and Recycling Stability. Tetrahedron Asymmetry 2012, 23 (3-4), 230-236.
https://doi.org/10.1016/j.tetasy.2012.02.008

[31]. Höhne, M.; Bornscheuer, U. T. Biocatalytic Routes to Optically Active Amines. ChemCatChem 2009, 1 (1), 42-51.
https://doi.org/10.1002/cctc.200900110

[32]. Vasquez, M.; Lambrianides, A.; Schneider, M.; Kümmerer, K.; Fatta-Kassinos, D. Environmental side effects of pharmaceutical cocktails: What we know and what we should know. J. Hazard. Mater. 2014, 279, 169-189.
https://doi.org/10.1016/j.jhazmat.2014.06.069

[33]. Breen, G. F. Enzymatic resolution of a secondary amine using novel acylating reagents. Tetrahedron Asymmetry 2004, 15 (9), 1427-1430.
https://doi.org/10.1016/j.tetasy.2004.03.026

[34]. Morgan, B.; Zaks, A.; Dodds, D. R.; Liu, J.; Jain, R.; Megati, S.; Njoroge, F. G.; Girijavallabhan, V. M. Enzymatic Kinetic Resolution of Piperidine Atropisomers: Synthesis of a Key Intermediate of the Farnesyl Protein Transferase Inhibitor, SCH66336. J. Org. Chem. 2000, 65 (18), 5451-5459.
https://doi.org/10.1021/jo991513v

[35]. Oláh, M.; Boros, Z.; Hornyánszky, G.; Poppe, L. Isopropyl 2-ethoxyacetate-an efficient acylating agent for lipase-catalyzed kinetic resolution of amines in batch and continuous-flow modes. Tetrahedron 2016, 72 (46), 7249-7255.
https://doi.org/10.1016/j.tet.2015.12.046

[36]. Lee, J. H.; Han, K.; Kim, M.; Park, J. Chemoenzymatic Dynamic Kinetic Resolution of Alcohols and Amines. Eur. J. Org. Chem. 2010, 2010 (6), 999-1015.
https://doi.org/10.1002/ejoc.200900935

[37]. Faber, K. Biotransformations in Organic Chemistry: A Textbook, 6th ed.; Springer: Berlin, Germany, 2011.
https://doi.org/10.1007/978-3-642-17393-6

[38]. Liljeblad, A.; Kanerva, L. T. Biocatalysis as a profound tool in the preparation of highly enantiopure β-amino acids. Tetrahedron 2006, 62 (25), 5831-5854.
https://doi.org/10.1016/j.tet.2006.03.109

[39]. Asensio, G.; Andreu, C.; Marco, J. A. Enzyme-Mediated Enantioselective Acylation of Secondary Amines in Organic Solvents. Tetrahedron Lett. 1991, 32 (33), 4197-4198.
https://doi.org/10.1016/S0040-4039(00)79903-5

[40]. Kourist, R.; Bornscheuer, U. T. Biocatalytic synthesis of optically active tertiary alcohols. Appl. Microbiol. Biotechnol. 2011, 91 (3), 505-517.
https://doi.org/10.1007/s00253-011-3418-9

[41]. Özdemirhan, D.; Sezer, S.; Sönmez, Y. Enzyme-catalyzed resolution of aromatic ring fused cyclic tertiary alcohols. Tetrahedron Asymmetry 2008, 19 (23), 2717-2720.
https://doi.org/10.1016/j.tetasy.2008.12.002

[42]. Tanyeli, C.; Özdemirhan, D. Chemoenzymatic route to various spirocyclic compounds based on enantiomerically enriched tertiary allylic, homoallylic, and homopropargylic alcohols. Tetrahedron Asymmetry 2014, 25 (8), 658-666.
https://doi.org/10.1016/j.tetasy.2014.03.004

[43]. Sezer, S.; Gümrükçü, Y.; Şahin, E.; Tanyeli, C. Stereoselective synthesis of spirocyclic cyclopentapyrans by the Pauson-Khand reaction on camphor tethered enynes. Tetrahedron Asymmetry 2008, 19 (23), 2705-2710.
https://doi.org/10.1016/j.tetasy.2008.11.020

[44]. Mori, M. Enyne Metathesis. In Topics in Organometallic Chemistry; Springer Berlin Heidelberg: Berlin, Heidelberg, 1998; pp 133-154.
https://doi.org/10.1007/3-540-69708-X_5

[45]. Burke, M. D.; Schreiber, S. L. A Planning Strategy for Diversity‐Oriented Synthesis. Angew. Chem. Int. Ed. 2004, 43 (1), 46-58.
https://doi.org/10.1002/anie.200300626

[46]. Bergman, Y. E.; Mulder, R.; Perlmutter, P. Total Synthesis of 20-Norsalvinorin A. 1. Preparation of a Key Intermediate. J. Org. Chem. 2009, 74 (6), 2589-2591.
https://doi.org/10.1021/jo802623n

[47]. Sunderhaus, J. D.; Dockendorff, C.; Martin, S. F. Synthesis of diverse heterocyclic scaffolds via tandem additions to imine derivatives and ring forming reactions. Tetrahedron 2009, 65 (33), 6454-6469.
https://doi.org/10.1016/j.tet.2009.05.009

Supporting Agencies

European Cooperatıon in Science and Technology COST ACTION CA21115
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).